Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Determining the thermal and physicals properties of oil processing products

  • Authors

    Kryvda Viktoria I.

  • Subject

    ENERGETICS

  • Year 2015
    Issue 1(45)
    UDC [665.63:543.2].001.57
    DOI 10.15276/opu.1.45.2015.15
    Pages 92-95
  • Abstract

    In the last decades both technological process’ improvement and primary energy resources saving are the main tasks of oil refineries. Using various oil products does impose an accurate knowledge of their properties. The dispersion analysis applied makes possible to construct a model simulating the primary oil refining products’ and raw materials’ thermal physical properties. As a result of data approximation there were obtained polynomials with coefficients differing from attributable to the studied oil products fractions. The research represents graphic dependences of thermal physical properties on temperature values for diesel oil fraction. The linear character of density and calorific capacity dependencies from temperature is represented with a proportional error in calculations. The relative minimum error is below 2% that confirms the implemented calculations’ adequacy. The resulting model can be used in calculations for further technological process improvements.

  • Keywords thermal physical properties, adequacy, dispersion analysis
  • Viewed: 2162 Dowloaded: 7
  • Download Article
  • References

    Література
    1.    Пат. 107027 Україна, МПК С10G 7/00, B01D 3/00. Установка атмосферної вакуумної трубчатки для підготовки і первинної переробки нафти / Максимов М.В., Кривда В.І.; патентовласники Максимов М.В., Кривда В.І. ― № a201303011; заяв. 11.03.2013; надр. 10.11.2014, Бюл. № 21/2014.
    2.    Максимов, М.В. Определение минимального температурного напора между холодными и горячими потоками для рекуперативных теплообменников ЭЛОУ-АВТ / М.В. Максимов, В.И. Крывда // Холодил. техніка і технологія. ― 2011. ― № 3(131). ― С. 56―62.
    3.    Liao, T. Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device / T. Liao, B. Lin, Z. Yang // International Journal of Thermal Sciences. ― 2014. ― Vol. 77. ― PP. 158―164.
    4.    Шишков, В.И. Термодинамические свойства нитрита ванадия / В.И. Шишков, В.М. Жихарев // Вестник Южно-Уральского государственного университета. Серия «Металлургия». ― 2012. ― № 15. ― С. 46―49.
    5.    Железный, В.П. Новые структурно-аддитивные методы прогнозирования теплофизических свойств углеводородов / В.П. Железный, А.С. Маркварт //Актуальные вопросы исследований пластовых систем месторождений углеводородов: сб. науч. статей: в 2 ч. / под ред. Б.А. Григорьева. ― М.: Газпром ВНИИГАЗ, 2011. ― Ч. 1. ― С. 207―218.
    6.    Heat transfer properties of engine oils / S. Wrenick, P. Sutor, H. Pangilinan, E.E. Schwarz / Proceedings of WTC2005 World Tribology Congress III, Washington, D.C., USA, September 12–16, 2005. ― 2005. ― Vol. 1. ― PP. 595―596.
    7.    The temperature dependence of parachor / V.P. Zhelezny, Yu.V. Semenyuk, S.N. Ancherbak, N.V. Emel’yanenko // Russian Journal of Physical Chemistry A. ― 2009. ― Vol. 83, Issue 2. ― PP.182―186.
    8.    Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling / V. Nikkhah, M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh // Experimental Thermal and Fluid Science. ― 2015. ― Vol. 60. ― PP. 83―95.

    References
    1.    Maksymov, M.V., & Kryvda, V.I. (2014). Setting of atmospheric vacuum distillation unit for preparation and primary oil refining. Ukraine Patent: UA 107027.
    2.    Maksimov, M.V., & Kryvda, V.I. (2011). Determination of minimal temperature pressure between cold and hot streams for recuperative heat exchangers ELOU-AVT. Refrigeration Engineering and Technology, 3, 56―62.
    3.    Liao, T., Lin, B., & Yang, Z. (2014). Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device. International Journal of Thermal Sciences, 77, 158―164.
    4.    Shishkov, V.I., & Zhikharev, V.M. (2012). Thermodynamic properties of vanadium nitride. Bulletin of the South Ural State University. Series “Metallurgy”, 15, 46―49.
    5.    Zhelezny, V.P., & Markwart, A.S. (2012). New structural and additive methods for predicting thermal properties of hydrocarbon. In B.A. Grigoryev (Ed.), Important to Study Hydrocarbon Reservoir: Collection of Scientific Articles (pp. 353–370). Moscow: Gazprom VNIIGAZ.
    6.    Wrenick, S., Sutor, P., Pangilinan, H., & Schwarz, E.E. (2005). Heat transfer properties of engine oils. In Proceedings of WTC2005 World Tribology Congress III (Vol. 1, pp. 595-596). New York, N.Y.: American Society of Mechanical Engineers.
    7.    Zhelezny, V.P., Semenyuk, Yu.V., Ancherbak, S.N., & Emel’yanenko, N.V. (2009). The temperature dependence of parachor. Russian Journal of Physical Chemistry A, 83(2), 182―186.
    8.    Nikkhah, V., Sarafraz, M.M., Hormozi, F., & Peyghambarzadeh, S.M. (2015). Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Experimental Thermal and Fluid Science, 60, 83―95.

  • Creative Commons License by Author(s)