Article
-
Title
Development of CAD implementing the algorithm of boundary elements’ numerical analytical method
- Authors
-
Subject
COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION
-
Year 2015Issue 1(45)UDC 004.43DOI 10.15276/opu.1.45.2015.21Pages 128-133
-
Abstract
Up to recent days the algorithms for numerical-analytical boundary elements method had been implemented with programs written in MATLAB environment language. Each program had a local character, i.e. used to solve a particular problem: calculation of beam, frame, arch, etc. Constructing matrixes in these programs was carried out “manually” therefore being time-consuming. The research was purposed onto a reasoned choice of programming language for new CAD development, allows to implement algorithm of numerical analytical boundary elements method and to create visualization tools for initial objects and calculation results. Research conducted shows that among wide variety of programming languages the most efficient one for CAD development, employing the numerical analytical boundary elements method algorithm, is the Java language. This language provides tools not only for development of calculating CAD part, but also to build the graphic interface for geometrical models construction and calculated results interpretation.
- Keywords algorithm, numerical-analytical boundary elements method, programming language, object-oriented language, code, CAD, program
- Viewed: 1895 Dowloaded: 8
- Download Article
-
References
Література
1. Kerelezova, I. Numerical modeling of quasibrittle materials by means of fracture mechanics approach / I. Kerelezova // The University of Architecture, Civil Engineering and Geodesy. — Sofia, 2002.
2. Khapaev, M. LCR2D: 2D field solver for calculation of inductances, capacitances and resistances [Электронный ресурс] / M. Khapaev // Moscow State University, Faculty of Computer Science, Dep. of Numerical Methods. — Moscow, 2005. — Режим доступа: http://vm.cs.msu.ru/sotr/vmhap/lcr2d/lcr_man.pdf (Дата обращения: 01.09.2014).
3. Pozrikidis, C. A Practical Guide to Boundary Element Methods with the Software Library BEMLIB / C. Pozrikidis. — Boca Raton : Chapman & Hall/CRC, 2002. — 440 р.
4. Абдылдаев, Э.К. Анализ методов конечных и граничных элементов на практических задачах [Электронный ресурс] / Э.К. Абдылдаев, К.С. Раматов, Батырхан Серик // Вестник Казахского национального технического университета им. К.И. Сатпаева. — 2008. — № 4. — Режим доступа: http://e-lib.kazntu.kz/sites/default/files/articles/abdyldaev_2008_4.pdf (Дата обращения: 01.09.2014).
5. Себеста, Р.У. Основные концепции языков программирования = Concepts of Programming Languages : монография / Р.У. Себеста; [Пер. с англ. Д.А. Клюшина, А.В. Назаренко]. — 5-е изд. — М. : Вильямс, 2001. — 668 с.
6. Сафронов, И.К. Visual Basic в задачах и примерах: монография / И.К. Сафронов. — СПб. : БХВ-Петербург, 2008. — 394 с.
7. Численно-аналитический метод граничных элементов / А.Ф. Дащенко, Л.В. Коломиец, В.Ф. Оробей, Н.Г. Сурьянинов. — В 2 т. — Одесса: ВМВ, 2010. — Т.1. — 416 с. — Т.2. — 512 с.
8. Численные методы в механике / В.А. Баженов [и др.]. — Одесса: СТАНДАРТЪ, 2005. — 564 с.
9. Al-Otaibi, M. The application of BEASY software to simulate cathodic protection of pipelines and storage tanks [Электронный ресурс] / M. Al-Otaibi // University of British Columbia. — 2010. — Режим доступа: https://circle.ubc.ca/handle/2429/30264 (Дата обращения: 01.09.2014).
10. BEM++: An open source boundary element library [Электронный ресурс] / S. Arridge et al. — Режим доступа: http://www.bempp.org (Дата обращения: 01.09.2014).
11. Лутц, М. Программирование на Python: монография / М. Лутц; [Пер. С. Маккавеева]. — 2-е изд. — СПб.: Символ-Плюс, 2002. — 1135 с.
12. Oracle: Hardware and Software, Engineered to Work Together [Электронный ресурс] / Oracle Corporation. — Режим доступа: http://www.oracle.com (Дата обращения: 01.09.2014).
13. Эккель, Б. Философия Java = Thinking in Java / Б. Эккель; [Пер. с англ. И. Портянкин]. — СПб.: Питер, 2001. — 876 с.
References
1. Kerelezova, I. (2002). Numerical Modeling of Quasibrittle Materials by Means of Fracture Mechanics Approach (PhD thesis, The University of Architecture, Civil Engineering and Geodesy). Sofia, Bulgaria: UACG.
2. Khapaev, M. (2005). LCR2D: 2D field solver for calculation of inductances, capacitances and resistances. The faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University. Retrieved from http://vm.cs.msu.ru/sotr/vmhap/lcr2d/lcr_man.pdf
3. Pozrikidis, C. (2002). A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. Boca Raton: Chapman & Hall/CRC.
4. Abdyldaev, E.K., Ramatov, K.S., & Batyrkhan Serik (2008). Analysis of methods of finite and boundary elements for practical problems. Vestnik KazNTU, 4. Retrieved from http://e-lib.kazntu.kz/sites/default/files/articles/abdyldaev_2008_4.pdf
5. Sebesta, R.W. (2002). Concepts of Programming Languages (5th Ed.). Boston: Addison-Wesley.
6. Safronov, I.K. (2008). Visual Basic in Examples and Problems. Saint Petersburg: BHV-Sankt-Peterburg.
7. Daschenko, A.F., Kolomiets, L.V., Orobey, V.F., & Suryaniniv, N.G. (2010). Numerical-Analytical Boundary Elements Method. Odessa: VMV.
8. Bazhenov, V.A., Dashchenko, A.F., Kolomiets, L.V., Orobey, V.F., & Suryaninov, N.G. (2005). The Numerical Methods in Mechanics. Odessa: STANDART.
9. Al-Otaibi, M. (2010). The Application of BEASY Software to Simulate Cathodic Protection of Pipelines and Storage Tanks (Master's thesis, University of British Columbia). Vancouver: University of British Columbia.
10. BEM++: An open source boundary element library. Retrieved from http://www.bempp.org
11. Lutz, M. (2001). Programming Python (2nd Ed.). Beijing; Farnham: O’Reilly.
12. Oracle: Hardware and Software, Engineered to Work Together. Retrieved from http://www.oracle.com
13. Eckel, B. (2000). Thinking in Java (2nd Ed.). Upper Saddle River, NJ: Prentice Hall. -
by Author(s)