Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    SIMULATION OF A FLOATING BOLLARD OF A SHIP LOCK BY THE FINITE ELEMENT METHOD

  • Authors

    Sydorenko Igor I.
    Prokopovich Igor V.
    Zhang Yong
    Voronenko Serhii
    Zhang Yunxuan

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2021
    Issue 1(63)
    UDC UDC 629.565.3
    DOI 10.15276/opu.1.63.2021.01
    Pages 5-12
  • Abstract

    One of the main elements of the lock’s mooring equipment is the floating bollard. Failure of this element of the mooring equipment always leads to great difficulties in organizing ship passes in the lock, in terms of the arrangement of vessels in the lock chamber and the forced withdrawal of locks from work to bring the floating bollards into working condition. Therefore, the analysis of the performance of this element, both at the design stage and during operation, taking into account various options for its loading under the action of changing external conditions, is an urgent task. The article presents the results of a study of one of the structures of a floating bollard of a ship’s lock, which is in real operation. The studies were carried out using the finite element method, in which 3D modeling of the device under consideration was carried out and its stress-strain state was analyzed under various loading options, taking into account the dynamics of mooring operations and weather conditions. A comparative analysis of the created finite element model of the device under consideration with its simplified model in the form of an elastic beam system with a uniform cross section is carried out. A graphic interpretation of the results of the analysis of the stress-strain state of the device under consideration is given, in which the most loaded structural elements are distinguished. The identified location of the places of the largest stress-strain state is proposed to be used as a theoretical basis for the deployment of sensors of the system for alerting the state of the loading of the floating bollard of the ship lock.

  • Keywords river lock, floating bollard, 3D modeling, stress-strain state, finite element method
  • Viewed: 14 Dowloaded: 3
  • Download Article
  • References

    Література

    1. Felski A., Zwolak K. The Ocean-Going Ships-Challenges and Threats. Journal of Marine Science and Engineering. 2020. № 8. P. 41–50.

    2. Иванов В.В. Усилия, действующие на объект швартовки со стороны одиночной якорной связи. Вестник МГТУ: труды Мурман. гос. техн. ун-та. 2011. Т. 14, № 4. С. 724–727.

    3. Yang S., Ringsberg J. Towards the assessment of impact of unmanned vessels on maritime transportation safety. Realiability Engineering & System Safety. 2017. № 165. P. 155–169.

    4. Юдин Ю. И. Переменные составляющие воздействия регулярного волнения на корпус судна Вестник МГТУ: труды Мурман. гос. техн. ун-та. 2011. Т. 12, № 3. С. 471–476.

    5. Bergdahl L., Palm J., Eskilsson, C., Lindahl, J. Dynamically Scaled Model Experiment of a Mooring Cable. J. Mar. Sci. Eng. 2016. № 4. P. 5–12.

    6. Johanning L., Smith G., Wolfram J. Measurements of static and dynamic mooring line dampingand their importance for floating WEC devices. Ocean Eng. 2007. № 34. P. 1918–1934.

    7. Martinelli L., Ruol P., Cortellazzo G. On mooring design of wave energy converters: The Seabreath application. Coast. Eng. Proc. 2012. № 1. P. 3–18.

    8. Spanos P.D., Arena F., Richichi A., Malara G. Efficient Dynamic Analysis of a Nonlinear Wave Energy Harvester Model. J. Offshore Mech. Arctic Eng. 2016. № 138. P. 40–49.

    9. Tsukrov I., Eroshkin O., Paul W., Celikkol B. Numerical modeling of nonlinear elastic components of mooring systems. IEEE J. Ocean. Eng. 2005. № 30. P. 37–46.

    10. Xu Z., Huang S. Numerical investigation of mooring line damping and the drag coefficients of studless chain links. J. Mar. Sci. 2014. № 13. P. 76–84.

    11. Chai Y., Varyani K., Barltrop N. Semi-analytical quasi-static formulation for three-dimensional partially grounded mooring system problems. Ocean Eng. 2002. № 29. P. 627–649.

    12. Pascoal R., Huang S., Barltrop N., Soares C.G. Equivalent force model for the effect of mooring systems onthe horizontal motions. Appl. Ocean Res. 2005. № 27, P. 165–172.

    13. 李荣辉, 吴红霞.长江城陵矶至武汉河段船舶大型化发 展分析.中国水运, 2010. № 10(6). P. 1–12.

    14. Бате К.-Ю. Методы конечных элементов. М. : Физматлит. 2010. 1024 с.

    15. Зенкевич О. С. Метод конечных элементов в технике. М. : Мир. 1975. 543 с.

    16. Галлагер Р. Метод конечных элементов. Основы. М. : Мир. 1984. 428 с.

    References

    1. Felski, A., & Zwolak, K. (2020). The Ocean-Going Ships-Challenges and Threats. Journal of Marine Science and Engineering, 8, 41–50.

    2. Ivanov, V.V. (2011). Efforts acting on the mooring object from the side of a single anchor connection. Vestnik MGTU, 14, 4, 724–727.

    3. Yang, S., & Ringsberg, J. (2017). Towards the assessment of impact of unmanned vessels on maritime transportation safety. Realiability Engineering & System Safety, 165, 155–169.

    4. Yudin, Yu. I. (2011). Variable components of the effect of regular waves on the ship’s hull. Vestnik MGTU, 12, 3, 471–476.

    5. Bergdahl, L., Palm, J., Eskilsson, C., & Lindahl, J. (2016). Dynamically Scaled Model Experiment of a Mooring Cable. J. Mar. Sci. Eng., 4, 5–12.

    6. Johanning, L., Smith, G., & Wolfram, J. (2007). Measurements of static and dynamic mooring line dampingand their importance for floating WEC devices. Ocean Eng., 34, 1918–1934.

    7. Martinelli, L., Ruol, P., & Cortellazzo, G. (2012). On mooring design of wave energy converters: The Seabreath application. Coast. Eng. Proc., 1, 3–18.

    8. Spanos, P.D., Arena, F., Richichi, A., & Malara, G. (2016). Efficient Dynamic Analysis of a Nonlinear Wave Energy Harvester Model. J. Offshore Mech. Arctic Eng., 138, 40–49.

    9. Tsukrov, I., Eroshkin, O., Paul, W., & Celikkol, B. (2005). Numerical modeling of nonlinear elastic components of mooring systems. IEEE J. Ocean. Eng., 30, 37–46.

    10. Xu, Z., & Huang, S. (2014). Numerical investigation of mooring line damping and the drag coefficients of studless chain links. J. Mar. Sci., 13, 76–84.

    11. Chai, Y., Varyani, K., & Barltrop, N. (2002). Semi-analytical quasi-static formulation for threedimensional partially grounded mooring system problems. Ocean Eng., 29, 627–649.

    12. Pascoal, R., Huang, S., Barltrop, N., & Soares, C.G. (2005). Equivalent force model for the effect of mooring systems onthe horizontal motions. Appl. Ocean Res., 27, 165–172.

    13. Li Ronghui, & Wu Hongxia. (2010). Analysis on the development of large-scale ships in the Yangtze River from Chenglingji to Wuhan. China Water Transport, 10(6), 1–12.

    14. Bate, K.-Yu. (2010). Finite element methods. Moscow: Fizmatlit.

    15. Zenkevich, O. S. (1975). Method of finite elements in technology. Moscow: Mir.

    16. Gallager, R. (1984). Method of finite elements. Basics. Moscow: Mir.

  • Creative Commons License by Author(s)