Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    DETERMINATION OF THE NONLINEAR PARAMETER AND INTERNAL PRESSURE IN A LIQUID BY THE ACOUSTIC METHOD

  • Authors

    Manicheva N.
    Dudzinskii Jr.
    Titova N.
    Zakharova A.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2021
    Issue 1(63)
    UDC 534.8.081.7
    DOI 10.15276/opu.1.63.2021.09
    Pages 88-94
  • Abstract

    An acoustic method is proposed for assessing the molecular properties of a liquid, determining the nonlinear parameter of liquids from the ratio of the first and second harmonics when the acoustic wave changes, and using this parameter to measure the internal pressure. In addition, the proposed method measures intermolecular distances for the studied liquids. In organ fluids, the effects of sound scattering and wave interaction are enhanced. In body fluids, at the molecular level, there is a small amount of microscopic bubbles. This leads to the appearance of the phenomenon of cavitation. These phenomena can be harmful, but not always. There are devices for biological and pharmaceutical technologies, medical devices that successfully use these effects. The paper presents a functional diagram of the experiment, identifies the oscillograms of acoustic signals of finite amplitude at different distances from the emitter. The same devices based on quartz plates 25 mm in diameter with a resonance frequency of 3 MHz were used as the emitter and receiver. This difference of approximately three times the resonance frequencies of the sensors and the acoustic signal ensures the linearity of the amplitude-frequency response of both sensors. Nonlinear acoustic methods are a global trend in biomedical research, as they open up new opportunities and prospects in the development of medical devices. The appearance of higher harmonics in the curvature of the initial harmonic wave of finite amplitude can be used for express analysis of the physical properties of pure liquids and especially aqueous solutions of organic substances.This method of experimental determination of the nonlinear parameter and internal pressure in a liquid is more convenient than the static one, since it does not require the use of high excess static pressures. The proposed acoustic method gives less error than the dynamic one. The accuracy of such a determination can be sufficient to judge the change in the intermolecular interaction in liquids.

  • Keywords nonlinear wave effects, internal pressure, harmonic, acoustic wave
  • Viewed: 11 Dowloaded: 2
  • Download Article
  • References

    Література

    1. Rienstra S.W., Hirschberg A. An Introduction to Acoustics. Eindhoven University of Technology, 2021. 348 p.

    2. Garrett S.L. Nonlinear Acoustics. In: Understanding Acoustics. Graduate Texts in Physics. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-44787-8_15.

    3. Tournat V. Introductory Lecture on Nonlinear Acoustics. Laboratoire dʼAcoustique de lʼUniversité du Maine (LAUM) UMR-CNRS 6613. Le Mans, France, 2014. 131 p.

    4. Дудзінський Ю.М., Витків В.В., Жукова А. В. Модель поперечних коливань затоплених струменевих оболонок. Проблеми обчислювальної механіки і міцності конструкцій. 2011. № 15. C. 93–99.

    5. Бутирський Е.Ю. Математичні моделі гідроакустичних сигналів і методи їх обробки. СанктПетербург : Стратегія майбутнього, 2018. 648 с.

    6. Алдошина І.А., Войшвилло А.Г. Високоякісні акустичні системи та випромінювачі. М. : Книга на Вимогу, 2013. 168 с.

    7. Rudnic I. On the attenuation of finite amplitude waves in a liquid. J. Acoust. Soc. Amer. 1958. V. 30, N 6. P. 564–567.

    8. Дудзинский Ю.М., Жукова А.В., Молчан Е.Г. Оценка молекулярных свойств жидкости с помощью нелинейных акустических явлений. Электроника и связь. 2012. № 1. С. 37–41.

    9. Зарембо Л.К., Красильников В.А. Введение в нелинейную акустику. Москва : Наука, 1966. 520 с.

    10. Галанін В.В., Адишірін-Заде К.А. Визначення нелінійного параметра В / А біологічних рідин на основі спектрального аналізу інтенсивних ультразвукових хвиль. Вісник нових медичних технологій. 2019. №2. С. 107–110.

    References

    1. Rienstra, S.W., & Hirschberg, A. (2021). An Introduction to Acoustics. Eindhoven University of Technology, 348.

    2. Garrett, S.L. (2020). Nonlinear Acoustics. In: Understanding Acoustics. Graduate Texts in Physics. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-44787-8_15.

    3. Tournat, V. (2014). Introductory Lecture on Nonlinear Acoustics. Laboratoire dʼAcoustique de lʼUniversité du Maine (LAUM) UMR-CNRS 6613, Le Mans, France, 131.

    4. Dudzinskii, Yu.M., Vitkov, V.V., & Zhukova, A.V. (2011). Model of transversal vibrations of the flooded jet shells. Problems of computational mechanics and strength of structures, 15, 93–99.

    5. Butyrsky, E.Y. (2018). Mathematical models of sonar signals and methods of their processing. St. Petersburg: Strategy of the future.

    6. Aldoshina, I.A, & Voishvillo, A.G. (2013). High-quality acoustic systems and emitters. Moscow: Book on Demand.

    7. Rudnic, I. (1958). On the attenuation of finite amplitude waves in a liquid. J. Acoust. Soc. Amer., 30, 6, 564–567.

    8. Dudzinskii, Yu.M., Zhukova, A.V., & Molchan, E.G. (2012). Assessment of the molecular properties of a liquid using nonlinear acoustic phenomena. Electronics and communications, 1, 37–41.

    9. Zarembo, L.K., & Krasilnikov, V.A. (1966). Introduction to nonlinear acoustics. Moscow: Nauka.

    10. Galanin, V.V, & Adyshirin-Zade, K.A. (2019). Determination of the nonlinearity parameter в/а of biological liquids on the basis of spectral analysis heavy ultrasonic waves. Journal of New Medical Technologie, 2, 107–110.

  • Creative Commons License by Author(s)