Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Measurement problems in integrated technologies of functional management of complex systems

  • Authors

    Oborsky Gennady A.
    Stanovskyi Olexandr L.
    Prokopovich Igor V.
    Zabarnaya Elionora N.
    Shvets Pavlo S.

  • Subject

    METROLOGY, STANDARDIZATION AND CERTIFICATION

  • Year 2021
    Issue 2(64)
    UDC 004.93.1
    DOI 10.15276/opu.2.64.2021.08
    Pages 61-70
  • Abstract

    Management is a purposeful influence on the system in order to stabilize or change in accordance with the objectives. From this follows the fact that any management must be constantly accompanied by measurement: both in the calculation and implementation of the impact, and in the registration and evaluation of changes that occur. Thus, all parameters of the system, both those that change (managed) and those that change (manage), must comply with some established rules and laws of measurement theory, first of all, methods of measuring physical quantities, methods of accounting for measurement errors and existing measuring instruments. In the theory of automatic control, which is based on complex mathematical models and methods, most often, we are talking about control with only one variable, the emergence of even the second causes such logical and computational difficulties that require approaches at the level of creative thinking and invention. At the same time, there are complex technical and organizational systems that require management by changing not only a large number of parameters, but also, sometimes, and their combinations, or some functionalities. In computer science, a functional is synonymous with a higher-order function, that is, a function whose arguments are several other functions or one that returns another function as a result. Functional control in addition to all the mathematical and hardware control problems in general, creates additional problems related to finding the most adequate functionalities and ensuring the accuracy and reliability of their measurement. To do this, new methods are proposed to find the effect of individual control parameters and functionalities on the control object. In particular, such methods include methods of technical and economic titration, operational conversion of measurement results, etc.

  • Keywords functional control, measurement levels, integrated technologies, organizational and technical complex systems
  • Viewed: 42 Dowloaded: 5
  • Download Article
  • References

    Література

    1. Ткаченко O., Ткаченко K. (2018). Система підтримки прийняття рішень щодо управління підготовкою кадрів. Цифрова платформа: інформаційні технології в соціокультурній сфері. 2018. № 2. C. 37–49. DOI: https://doi.org/10.31866/2617-796x.2.2018.155659.

    2. Ткаченко O. Когнітивне моделювання складних систем. Цифрова платформа: інформаційні технології в соціокультурній сфері. 2019. № 2(1), С. 11–19. DOI: https://doi.org/10.31866/2617- 796x.2.1.2019.175650.

    3. Louis C. Westphal. Handbook of Control Systems Engineering. The Springer International Series in Engineering and Computer Science. Springer, 635, 2001. 1063 p.

    4. Оборський Г.О., Слободяник П.Т., Костенко В.Л., Антощук С.Г. Вимірювання фізичних величин: навчальний посібник / за ред. Оборського Г.О. Одеса : Астропринт, 2012. 400 с.

    5. Moroz O. Management. Kyiv : Hryhoriy Skovoroda Institute of Philosophy of the National Academy of Sciences of Ukraine: Abris, 2002. Р. 657–742.

    6. Попович М. Г., Ковальчук О. В. Теорія автоматичного керування: підручник. Київ : Либідь, 2007. 656 с.

    7. Бесекерский В.А., Попов Е.П. (2003). Теория систем автоматического управления, СПб. : 326 с.

    8. Поспелова Д.А. (1986). Нечеткие множества в моделях управления и искусственного интеллекта. Москва: Наука, 312 с.

    9. Benoit E., Foulloy L. Towards fuzzy nominal scales. Measurement. 2003. Vol. 34, N.1, P. 49–55.

    10. Luce R., Krantz D., Suppes P. and Tversky A. Foundations of Measurement: Vol. 3, New York : Dover Publications, Inc., 2007. 356 p.

    11. Рясная І.І. Застій репрезентативної теорії вимірюван до невідповідних масштабів. Праці VІІ Міжнародна школа-семінар «Теорія прийняття». Ужгород : УжНУ, 2014. С. 220

    12. Блишун А. Ф. Сравнительный анализ методов измерения нечеткости. Изв. АН СССР. Техническая кибернетика. 1988. № 5. С. 152–175.

    13. Ryasnaya I.I. On the adequacy of the fuzzy scale in the problems of fuzzy cluster analysis. Computer mathematics. 2018. No. 2. P.73–79.

    14. Руспини Э.Г. Последние достижения в области нечеткого кластерного анализа. Нечеткие множества и теория возможностей. Недавние достижения. Москва : Радио и связь, 1986. С. 114–132.

    15. Ryasnaya I.I. Cluster analysis: the problem of adequacy. KDS 2014. XX-th International Conference “Knowledge – Dialogue – Solution”. Ukraine: Kiev, 2014. P. 85–86.

    16. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. 4-е изд. Москва : Наука, 1976. 544 с. ISBN 5-9221-0266-4.

    17. Hazewinkel Michiel. Functional. Encyclopedia of Mathematics. Springer. 2001. ISBN 978-1-55608- 010-4.

    18. Oborskiy G.A., Prokopovich I.V., Koryachenko A.A. Integral sensors for the dynamic characteristics of sand casting molds. Information technologies in education, science and production. 2012. V. 1. P. 5–11.

    19. Stanovska I.I., Monova D.A., Shvets P.S. New parameters and methods for measuring the level of latent risks from operant behavior of project management team members. Proceedings of the XVII International Scientific and Practical Conference. Project management: status and prospects. September 7 – 10, 2021. P. 76–77.

    20. Nakonechny M.V. Adjusting the dynamic characteristics of the automatic process control system in a nonlinear object of the second order when the object is affected by environmental factors. Methods and devices of quality control. 2009. № 22. P. 92–96.

    21. Bolotov V.V., Svechnikov O.M., Kolisnyk S.V., etc. Analytical chemistry. Kharkiv : NUPh Original, 2004. 479 p.

    22. Stanovsky O.L., Shvets P.S., Stanovskaya I.I. Systems for measuring the state of a pseudophysical object using analogs of titration proceses. Collection of works of ISTC “Sensors, devices and systems – 2021”, Cherkasy – Kherson – Lazurne, September, 2021. P. 130–132.

    References

    1. Tkachenko, O., & Tkachenko, K. (2018). Decision support system for training management. Digital platform: information technologies in the socio-cultural sphere, 2, 37–49. DOI: https://doi.org/ 10.31866/2617-796x.2.2018.155659.

    2. Tkachenko, O. (2019). Cognitive modeling of complex systems. Digital platform: information technologies in the socio-cultural sphere, 2(1), 11–19. DOI: https://doi.org/10.31866/2617-796x. 2.1.2019.175650.

    3. Louis, C. Westphal. (2001). Handbook of Control Systems Engineering. The Springer International Series in Engineering and Computer Science. Springer, 635, 1063.

    4. Oborsky, G.O., Slobodyanyk, P.T., Kostenko, V.L., & Antoshchuk, S.G. (2012). Measurement of physical quantities: textbook. Odessa: Astroprint.

    5. Moroz, O. (2002). Management. Kyiv: Hryhoriy Skovoroda Institute of Philosophy of the National Academy of Sciences of Ukraine: Abris, 657–742.

    6. Popovich, M.G., & Kovalchuk, O.V. (2007). Theory of automatic control. Kyev: Lybid.

    7. Besekersky,V.A., & Popov, E.P.( 2003). Theory of Automatic Control Systems, SPb.

    8. Pospelova, D.A. (1986). Fuzzy sets in models of control and artificial intelligence. Moscow: Nauka.

    9. Benoit, E., & Foulloy, L. (2003).Towards fuzzy nominal scales. Measurement, 34, 1, 49–55.

    10. Luce, R., Krantz, D., Suppes, P. & Tversky, A. (2007). Foundations of Measurement: Vol. 3, New York: Dover Publications, Inc.

    11. Ryasna, І.І. (2014). The stagnation of the representative theory of vimiryuvan to inappropriate scales. Pratsi VІІ International School-Seminar “Theory of Acceptance”. Uzhgorod: UzhNU, P. 220.

    12. Blishun, A.F. (1988). Comparative analysis of fuzzy measurement methods. Izv. Academy of Sciences of the USSR. Technical cybernetics, 5, 152–175.

    13. Ryasnaya, I.I. (2018). On the adequacy of the fuzzy scale in the problems of fuzzy cluster analysis. Computer mathematics, 2, 73–79.

    14. Ruspini, E.G. (1986). Recent advances in fuzzy cluster analysis. Fuzzy sets and the theory of possibilities. Recent achievements. Moscow: Radio and communication, P. 114–132.

    15. Ryasnaya, I.I. (2014). Cluster analysis: the problem of adequacy. KDS 2014. XX-th International Conference “Knowledge – Dialogue – Solution”. Ukraine: Kiev, P. 85–86.

    16. Kolmogorov, A.N., & Fomin, S.V. (1976). Elements of the theory of functions and functional analysis. 4th ed. Moscow: Nauka, 544 p. ISBN 5-9221-0266-4.

    17. Hazewinkel, Michiel (2001). Functional. Encyclopedia of Mathematics. Springer. ISBN 978-1-55608-010-4.

    18. Oborskiy, G.A., Prokopovich, I.V., & Koryachenko, A.A. (2012). Integral sensors for the dynamic characte - istics of sand casting molds. Information technologies in education, science and production, 1, 5–11.

    19. Stanovska, I.I., Monova, D.A., & Shvets, P.S. (2021). New parameters and methods for measuring the level of latent risks from operant behavior of project management team members. Proceedings of the XVII International Scientific and Practical Conference. Project management: status and prospects. September 7 – 10, pp. 76–77.

    20. Nakonechny, M.V. (2009). Adjusting the dynamic characteristics of the automatic process control system in a nonlinear object of the second order when the object is affected by environmental factors. Methods and devices of quality control, 22, 92–96.

    21. Bolotov, V.V., Svechnikov, O.M., & Kolisnyk, S.V., etc. (2004). Analytical chemistry. Kharkiv: NUPh Original.

    22. Stanovsky, O.L., Shvets, P.S., & Stanovskaya, I.I. (2021). Systems for measuring the state of a pseudophysical object using analogs of titration proceses. Collection of works of ISTC “Sensors, devices and systems – 2021”, Cherkasy – Kherson – Lazurne, September, pp. 130–132.

  • Creative Commons License by Author(s)