Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    High-precision remote temperature measurement method

  • Authors

    Oborsky Gennady A.
    Morgun Вoris А.
    Prokopovich Igor V.
    Morgun Yu. B.
    Golofeyeva Мaryna O.

  • Subject

    METROLOGY, STANDARDIZATION AND CERTIFICATION

  • Year 2021
    Issue 2(64)
    UDC 69.058.7
    DOI 10.15276/opu.2.64.2021.10
    Pages 81-87
  • Abstract

    The article considers the issues of improving the accuracy of temperature measurement with the help of infrared devices. A new method of remote measurement of body temperature by infrared devices, developed and patented by the authors, is described, in which a reference sensor in the form of a thin plate with a high coefficient of thermal conductivity is applied to the measuring surface. The method eliminates the main problems and factors that affect the accuracy of measurement. This is the coefficient of radiation of the surface of the research object, its physical condition, the presence of contamination of the surface of a solid body and, thus, allows you quickly and accurately measure the surface temperature of any body. The method also allows measuring the temperature of the gaseous medium by inserting a sensor into the area of contact with the measuring object in the form of a reference thin plate for heating, unlike all known methods of remote temperature measurement by infrared devices. To measure the temperature field of the gas flow, the sensor is inserted at an angle into the measurement area so that the infrared radiation is directed perpendicular to the receiving element of the pyrometer. The results of measurements of the surface temperature of various bodies in the process of their heating in comparison with existing methods are given. Possible errors that occur during the thermal inspection of the object and significantly affect the measurement results are considered. The presence of sufficient accuracy of the method allows its application within the automatic process control system. The use of the device based on the proposed method in the automatic process control system for measuring the integrated parameters of thermal processes by processing infrared fluxes from the surface of products and its integration into a separate link in the overall automated control system. The possibility of using the proposed method of measuring the temperature in the ACS technological processes is shown

  • Keywords thermal imaging method of measurement, surface radiation coefficient, reference sample, measurement accuracy, measurement uncertainty
  • Viewed: 48 Dowloaded: 1
  • Download Article
  • References

    Література

    1. Линевег Ф. Измерение температур в технике. Справочник. Москва : Металлургия, 1980, 544 с.

    2. Моргун Ю.Б., Прокопович И.В., Оборський Г.А., Моргун Б.А., Костина М.М. Зонд для измерения температуры поверхностей токопроводящих тел. Новые и нетрадиционные технологии в ресурсе и энергосбережении : Материалы международной научно технической конференции, г. Одесса,16-18 мая 2019 г. Одесса. 2019. С. 109–111.

    3. Rao D.S.P. Infrared thermography and its applications in civil engineering. The Indian Concrete Journal. 2008. P. 41–50.

    4. Metrology in Industry: The Key for Quality / French College of Metrology. Wiley-ISTE, 2006. 270 p. DOI: https://doi.org/10.1002/9780470612125.fmatter.

    5. Kimothi S.K. The Uncertainty of Measurements: Physical and Chemical Metrology and Analysis. ASQ Quality Press, 2002. 416 p.

    6. Valancius K, Skrinska A. Transient heat conduction process in the multilayer wall under the influence of solar radiation : Proceedings. Improving human potential program. Almeria, Spain: PSA, 2002. P. 179–185.

    7. Госсорг Ж. Инфракрасная термография. Основы. Техника. Применение. Москва : Мир, 1998. 416 с.

    8. Свет Д.Я. Объективные методы высокотемпературной пирометрии при непрерывном спектре измерения. Москва : Наука, 1968. 236 с.

    9. Оборський Г.О., Слободяник П.Т. Вимірювання неелектричних величин : підручник. Київ : Наука і техніка, 2005. 200 с.

    10. Брамсон М.А. Инфракрасное излучение нагретых тел. Т. 1. Москва : Наука, 1965. 224 с.

    11. Голофеева М.А., Тонконогий В.М., Балан В.А. Составление бюджета неопределенностей при ультразвуковом методе контроля качества изделий из синтеграна. Праці Одеського політехнічного університету. 2013. №3(42). С. 28–32.

    12. Оборський Г.О., Левинський О.С., Голофеева М.О. Дослідження впливу випромінювальної здатності матеріалів на точність тепловізійного контролю. Технологічний аудит та резерві виробництва. №2/3(28), 2016. С. 4–7.

    13. Спосіб дистанційного вимірювання температури: пат. 124888 Україна: МПК6, G01J5/00, G01J5/52, G01J5/60, G01N21/17. № а20190709; заявл. 01.07.2019; опубл. 08.12.2021, Бюл. № 13, 4 с. URL: https://ukrpatent.org/atachs/buleten-49-2021.zip (дата звернення 08.12.2021).

    14. Способ дистанционного измерения температуры: пат. 2589525 Россия: МПК6, G01J5/00, G01J5/52, G01K15/00. Заявл. 27.04.2015; опубл. 10.07.2016. URL: https://www.freepatent.ru/patents/ 2589525 (дата звернення 01.11.2021).

    15. Инфракрасный термометр FLUKE 574. Руководство по эксплуатации. URL: www.fluke.com; http://www.pribory.com. (дата звернення 01.11.2021).

    16. Зонд для вимірювання температури поверхонь тіл: пат. 104319 Україна: МПК6, G01K7/02. № u201506612; заявл. 06.07.2015; опубл. 25.01.2016, Бюл. № 2. 4 с. URL: https://uapatents. com/4- 104319-zond-dlya-vimiryuvannya-temperaturi-poverkhon-til.html (дата звернення 01.11.2021).

    17. Morgun B., Turmanidze R., Morgun J., Shvahirev P., Levynskyi O. Method for Measuring the Temperature in the Elements of a Wind Turbine Multiplier : Lecture Notes in Mechanical Engineering / Eds. Tonkonogyi V., Ivanov V., Trojanowska J., Oborskyi G., Pavlenko I. Advanced Manufacturing Processes III. InterPartner 2021. Springer, Cham. pp 695−703.

    References

    1. Lineveg, F. (1980). Measurement of temperatures in technology. Directory. Moscow: Metallurgy.

    2. Morgun, Yu.B., Prokopovich, I.V., Oborsky, G.A., Morgun, B.A., & Kostina, M.M. (2019). Probe for measuring the temperature of the surfaces of conductive bodies. New and non-traditional technologies in resource and energy saving: Proceedings of the international scientific and technical conference, - dessa, May 16-18, 2019 Odessa. 2019, pp. 109–111.

    3. Rao, D.S.P. (2008). Infrared thermography and its applications in civil engineering. The Indian Concrete Journal. P. 41–50.

    4. French College of Metrology. (2006). Metrology in Industry: The Key for Quality. Wiley-ISTE. DOI: https://doi.org/10.1002/9780470612125.fmatter.

    5. Kimothi, S.K. (2002). The Uncertainty of Measurements: Physical and Chemical Metrology and Analysis. ASQ Quality Press.

    6. Valancius, K., & Skrinska, A. (2002). Transient heat conduction process in the multilayer wall under the influence of solar radiation : Proceedings. Improving human potential program. Almeria, Spain: PSA, 2002. P. 179–185.

    7. Gossorg, J. (1998). Infrared thermography. Basics. Technics. Application. Moscow: Mir.

    8. Svet, D.Ya. (1968). Objective methods of high-temperature pyrometry with a continuous measurement spectrum. Moscow: Nauka.

    9. Oborsky G.O., & Slobodyanyk P.T. (2005). Measurement of non-electric quantities: a textbook. Kyiv: Science and Technology.

    10. Bramson, M.A. (1965). Infrared radiation of heated bodies. V. 1. Moscow: Nauka, 1965.

    11. Golofeeva, M.A., Tonkonogy, V.M., & Balan, V.A. (2013). Budgeting of uncertainties in the ultrasonic method of quality control of syntegran products. Proceedings of Odessa Polytechnic University, 3 (42), 28–32.

    12. Oborsky, G.O., Levinsky, O.S., & Golofeeva, M.O. (2016). Investigation of the influence of the emissivity of materials on the accuracy of thermal imaging control. Technological audit and production reserves, 2/3 (28), 4–7.

    13. Oborsky, G.O., Morgun, B.O., Levynsky,O.S., & Prokopovich, I.V. (2021). Patent of UA 124888. Ukraine. Method of remote temperature measurement. Retrieved from https://ukrpatent. org/atachs/buleten-49-2021.zip (Last access 08.12.2021)

    14. Vlasov, A.B. (2016). Patent of RU 2589525. Method of remote temperature measurement. Retrieved from: https://www.freepatent.ru/patents/2589525. (Last access 01.11.2021).

    15. FLUKE 574 infrared thermometer. Operation manual. Retrieved from: www.fluke.com; http://www.pribory.com (Last access 01.11.2021).

    16. Oborsky, G.O., Morgun, B.O., Morgun, Yu.B., & Prokopovich, I.V. (2016). Patent of UA 104319. Ukraine. Probe for measuring the temperature of body surfaces. Retrieved from: https://uapatents.com/4-104319-zond-dlya-vimiryuvannya-temperaturi-poverkhon-til.html (Last access 01.11.2021).

    17. Morgun, B., Turmanidze, R., Morgun, J., Shvahirev, P., & Levynskyi, O. (2021). Method for Measuring the Temperature in the Elements of a Wind Turbine Multiplier : Lecture Notes in Mechanical Engineering. Tonkonogyi V., Ivanov V., Trojanowska J., Oborskyi G., Pavlenko I. (Eds.) Advanced Manufacturing Processes III. InterPartner 2021. Springer, Cham. pp 695−703.

  • Creative Commons License by Author(s)