Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    AN ALTERNATIVE APPROACH TO CONTROL THE SHAPING OF PARTS WITH SPATIALLY COMPLEX SURFACES

  • Authors

    Zelinskiy Sergiy A.
    Tkach Andriy Zh.

  • Subject

    MACHINE BUILDING

  • Year 2022
    Issue 1(65)
    UDC 621.9.06
    DOI 10.15276/opu.1.65.2022.03
    Pages 30-39
  • Abstract

    In modern mechanical engineering, the number of parts with spatially complex surfaces is growing, the shape of which is determined analytically according to certain criteria. They are most widely used in the energy, aviation, tool industries (turbine blades, unicycles). With the current practice of processing such parts on CNC machines, when developing control programs, the analytically calculated shape of the surfaces is replaced by an approximate graphical model, which is used to calculate tool trajectories. This practice is due to the historically existing in the 1970-90s the capabilities of electronics and electrically driven devices. Despite the fundamentally new modern possibilities of computer control and electric drive devices, CNC machines retained the traditional initial principle of surface shaping using approximation and interpolation methods. At the same time, already at the stage of technological preparation of control programs, certain assumptions and losses in accuracy are assumed. The solution of this problem is relevant in connection with the current trend of increasing requirements for the accuracy of critical parts with spatially complex surfaces. The article proposes the principle of alternative control of shaping feeds when milling parts with spatially complex surfaces using the form of specifying the surface in an analytical form. The application of this principle excludes intermediate stages associated with the transformation of the analytical form of the task into a graphic one, the choice of coordinates of reference points and the interpolation of elementary sections. It is proposed, based on the proposed functional relationship between the geometric shape of a spatially complex surface and the established ratio of the components of the contour feed, based on the use of modern capabilities of computing devices and an electric drive, to provide a fundamentally new approach to shaping. The use of the proposed approach ensures complete automation of the preparation of control programs.

  • Keywords parts with spatially complex surfaces (SCS), milling, analytical model, error, accuracy, contour feed
  • Viewed: 40 Dowloaded: 6
  • Download Article
  • References

    Література

    1. Кузнецов Ю.Н. Станки с ЧПУ: Учеб. пособие. Киев : Вища шк., 1991. 278 с.

    2. Пуховский Е.С., Мясников Н.И. Технология гибкого автоматизированного производства. Киев : Техника, 1989. 207 с.

    3. B. M.J. Fard, E.V. Bordatchev, Experimental study of the effect of tool orientation in five-axis micro-milling of brass using ball-end mills. Int J Adv Manuf Technol. 2013. 67. P. 1079–1089. DOI: 10.1007/s00170-012-4549-6.

    4. Lo C.C. CNC machine tool surface interpolator for ball-end milling of free-form surfaces. Int J Mach Tool Manu. 2000. 40(3). P. 307–326. DOI: 10.1016/S0890-6955(99)00071-1.

    5. Чикуров Н.Г. Решение сложных траекторных задач в устройствах ЧПУ класса CNC, Управление, вычислительная техника и информатика. Вестник Уфимского государственного авиационного технического университета. 2003. № 3 (37), С. 170–177.

    6. Ерохин В.В Реализация геометрической задачи в станках с ЧПУ. Научно-технический вестник Брянского ГУ им. Петровского И.Г. 2004. №2. С. 67–72.

    7. Григорьян Г.Д., Зелинский В.А., Зелинский С.А. Способ управления профилирующими подачами при обработке криволинейных контуров на фрезерном станке с ЧПУ. А.С. №1399076. 04.08.1986.

    8. Зелинский В.А., Зелинский С.А. Способ управления профилирующими подачами при обработке криволинейных поверхностей на фрезерном станке с ЧПУ. А.С. №1787744 14.05.1990.

    9. S. Ehsan Layegh K., Erdim H., Lazoglu I. Offline force control and feedrate scheduling for complex free form surfaces in 5-axis milling. Procedia CIRP. 2012. 1. P. 96–101. DOI: 10.1016/j.procir.2012.04.015.

    10. Bharathi A., Dong J., Feed rate optimization for smooth minimum-time trajectory generation with higher order constraints. Int J Adv Manuf Technol. 2016. 82. P. 1029–1040. DOI: 10.1007/s00170-015-7447-x.

     

    References

    1. Kuznetsov, Yu.N. (1991). CNC machines: Proc. allowance. Kyiv: Vishcha school.

    2. Pukhovsky, E.S., & Myasnikov, N.I. (1989). Technology of flexible automated production. Kyiv: Tekhnika.

    3. B. M.J. Fard, & E.V. Bordatchev (2013). Experimental study of the effect of tool orientation in five-axis micro-milling of brass using ball-end mills. Int J Adv Manuf Technol, 67, 1079–1089. DOI: 10.1007/s00170-012-4549-6.

    4. Lo, C.C. (2000). CNC machine tool surface interpolator for ball-end milling of free-form surfaces. Int J Mach Tool Manu, 40(3), 307–326. DOI: 10.1016/S0890-6955(99)00071-1.

    5. Chikurov, N.G. (2003). Solving complex trajectory problems in CNC devices, Control, computer technology and informatics. Bulletin of the Ufa State Aviation Technical University, 3 (37), 170–177.

    6. Erokhin, V.V. (2004). Implementation of a geometric problem in CNC machines. Scientific and technical bulletin of the Bryansk State University. Petrovsky I.G. 2. 67–72.

    7. Grigoryan, G.D., Zelinsky, V.A., & Zelinsky, S.A. (1986). A method for controlling profiling feeds in the processing of curved contours on a CNC milling machine. A.S. No. 1399076. 08/04/1986.

    8. Zelinsky, V.A., & Zelinsky, S.A. (1990). A method for controlling profiling feeds in the processing of curved surfaces on a CNC milling machine. A.S. No. 1787744 05/14/1990.

    9. S. Ehsan Layegh K., Erdim, H., & Lazoglu, I. (2012). Offline force control and feedrate scheduling for complex free form surfaces in 5-axis milling. Procedia CIRP, 1, 96–101. DOI: 10.1016/j.procir.2012.04.015.

    10. Bharathi, A., & Dong, J. (2016). Feed rate optimization for smooth minimum-time trajectory generation with higher order constraints. Int J Adv Manuf Technol, 82, 1029–1040. DOI: 10.1007/s00170-015-7447-x.

  • Creative Commons License by Author(s)