Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    SIMULATION MODELLING IN THE TASKS OF DIGITAL ENGINEERING IN THE CREATION OF INFORMATION-MEASURING SYSTEMS

  • Authors

    Oborsky Gennady A.
    Guhnin Volodymyr P.
    Perperi Lyudmyla М.
    Goloborodko Ganna M.
    Goloborodkо V.

  • Subject

    METROLOGY, STANDARDIZATION AND CERTIFICATION

  • Year 2022
    Issue 1(65)
    UDC 681.2.083
    DOI 10.15276/opu.1.65.2022.15
    Pages 129-136
  • Abstract

    The object of this study is virtual measuring systems for shape deviation parameters. The article describes the designed virtual instrument for simulating the process of determining the parameters of the shape deviation of cylindrical shafts. To implement this task, a model for calculating the parameters of the deviation of the shape of the shafts is proposed, which takes into account the effect of random real diameters of the parts processed on metal cutting equipment on their geometric accuracy. The process of modelling the measurement of shaft shape deviation parameters is carried out in two stages. At the first stage, the movement of the plungers of the device to the surface of the shaft and the sound of the drive of the plungers are simulated. At the second stage, the parameters of the shape deviation of the cylindrical shafts are calculated. The shape of the cylindrical part depends on the random values of the actual diameters of the shaft in various intersections of the cylindrical part with planes. To obtain estimated values of shaft diameters in different cross-sections of the shaft by planes, an algorithm for calculating the current position of the profile point of the outer surface of the shaft has been developed. Because of the influence of physical cutting processes, the location of points on the surface of the shaft is random. Therefore, the position of the calculation point is determined by superimposing on the theoretical profile of the shaft a random variable, which is generated according to the law of equal probability. The method of processing the array of profile points coordinates to obtain numerical parameters of shaft shape deviation, such as taper, barrel, bow and ovality, is described.

  • Keywords deviation of form, virtual instruments, measurement methods, digital technologies
  • Viewed: 33 Dowloaded: 4
  • Download Article
  • References

    Література

    1. Petrillo A., De Felice F., Cioffi R., Zomparelli F. Fourth industrial revolution: current practices, challenges, and opportunities. Digital Transformation in Smart Manufacturing. 2018. Chapter 1. P. 1–20. DOI: https://doi.org/10.5772/intechopen.72304.

    2. Rodič B. Industry 4.0 and the new simulation modelling paradigm. Organizacija. 2017. 50(3). P. 193–207. DOI: https://doi.org/10.1515/orga-2017-0017.

    3. González I., Calderón A. Development of final projects in engineering degrees around an industry 4.0-oriented flexible manufacturing system: preliminary outcomes and some initial considerations. Education Sciences. 2018. 8 (4). 214. DOI: https://doi.org/10.3390/educsci8040214.

    4. Benis A., Amador Nelke S., Winokur, M. Training the Next Industrial Engineers and Managers about Industry 4.0: A Case Study about Challenges and Opportunities in the COVID-19 Era. Sensors. 2021. 21, 2905. DOI: https://doi.org/10.3390/s21092905.

    5. Souza R.G.d., Quelhas O.L.G. Model proposal for diagnosis and integration of Industry 4.0 concepts in production engineering courses. Sustainability. 2020. 12. 3471. DOI: https://doi.org/10.3390/su12083471.

    6. Goloborodko G.M., Perperi L.M., Guhnin V.P., Palennyi Yu.G. Measurement of dynamic characteristics of technological system. Праці Одеського політехнічного університету. 2016. 1(48). P. 19–23. DOI: 10.15276/opu.1.48.2016.04

    7. Гугнін В.П., Перпері Л.М., Голобородько Г.М. Імітаційне моделювання процесу визначення параметрів шорсткості поверхні за допомогою комп’ютерних вимірювальних технологій. Bulletin of the National Technical University “KhPI”. Series: New solutions in modern technology. Kharkiv: NTU “KhPI”. 2022. 1(11). C. 30–37. DOI:10.20998/2413-4295.2022.01.05.

    8. Гугнін В. П. Застосування технологій National Instruments при проведенні лабораторних занять. Шляхи реалізації кредитно-модульної системи організації навчального процесу і тестових форм контролю знань студентів: Матеріали науково-метод. семінару. 5. Одеса. Астропринт. 2011. С. 33–35.

    9. Chan C., Fok W. Evaluating learning experiences in virtual laboratory training through student perceptions: a case study in Electrical and Electronic Engineering at the Un

    10. Fan Y., Evangelista A., Indumathi V. Evaluation of remote or virtual laboratories in E-Learning engineering courses. 2021 IEEE Global Engineering Education Conference (EDUCON), 21–23 April 2021, Vienna, Austria. 2021. P. 136–143. DOI: 10.1109/EDUCON46332.2021.9454067.

    11. Swain N. Mathematical Modeling and Simulation using LabVIEW and LabVIEW MathScript. ASEE Annual Conference & Exposition, 2012, June. San Antonio, Texas. 2012. P. 25.917.1–25.917.

    12. DOI:10.18260/1-2—21674. 12. Bilous O., Hovorun T., Berladir K., Dunaeva M. Ensuring the Quality of Training Engineers in a Virtual Environment. In: , et al. Advanced Manufacturing Processes II . InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. 2021. DOI: https://doi.org/10.1007/978-3-030-68014-5_74.

    13. Каталог вимірювальних інструментів. URL: Мікрометр цифровий 0-12.7мм, 0.001мм точність, MicroUSB IP54 (freedelivery.com.ua). (дата звернення: 18.01.2022).

    14. National Instruments. “LabVIEW Development Guidelines”. Austin, Texas : USA, 2003. 97 p. URL: https://www.ni.com/pdf/manuals/321393d.pdf. (дата звернення: 25.01.2022).

    15. Jerome J. Virtual instrumentation using LabVIEW. New Delhi : PHI Learning Private Limited, 2010. 414 p.

     

    References

    1. Petrillo, A., De Felice, F., Cioffi, R., & Zomparelli, F. (2018). Fourth industrial revolution: current practices, challenges, and opportunities. Digital Transformation in Smart Manufacturing, 1, 1–20. DOI: https://doi.org/10.5772/intechopen.72304.

    2. Rodič, B. (2017). Industry 4.0 and the new simulation modelling paradigm. Organizacija, 50(3), 193–207. DOI: https://doi.org/10.1515/orga-2017-0017.

    3. González, I., & Calderón, A. (2018). Development of final projects in engineering degrees around an industry 4.0-oriented flexible manufacturing system: preliminary outcomes and some initial considerations. Education Sciences, 8 (4), 214. DOI: https://doi.org/10.3390/educsci8040214.

    4. Benis, A., Amador Nelke, S., & Winokur, M. (2021). Training the Next Industrial Engineers and Managers about Industry 4.0: A Case Study about Challenges and Opportunities in the COVID-19 Era. Sensors, 21, 2905. DOI: https://doi.org/10.3390/s21092905.

    5. Souza, R.G.d., & Quelhas, O.L.G. (2020). Model proposal for diagnosis and integration of Industry 4.0 concepts in production engineering courses. Sustainability, 12, 3471. DOI: https://doi.org/10.3390/ su12083471.

    6. Goloborodko, G. M., Perperi, L. M., Guhnin, V. P., & Palennyi, Yu. G. (2016). Measurement of dynamic characteristics of technological system. Odes’kyi Politechnichnyi Universytet. Pratsi, 1(48), 19–23. DOI: 10.15276/opu.1.48.2016.04.

    7. Gugnin, V., Perperi, L., & Goloborodko, G. (2022). Simulation modeling of the process of determination of surface roughness parameters using computer measuring technologies. Bulletin of the National Technical University “KhPI”. Series: New solutions in modern technology. Kharkiv: NTU “KhPI”, 1(11), 30–37. DOI: 10.20998/2413-4295.2022.01.05.

    8. Gugnin, V.P. (2011). The application of National Instruments technologies during the labexercises. Ways to implement a credit-modular system for organizing the educational process and the test forms to control students’ knowledge: materials of a scientific and methodological seminar, 5, Odessa: Astroprint, 33–35.

    9. Chan, C., & Fok, W. (2015). Evaluating learning experiences in virtual laboratory training through student perceptions: a case study in Electrical and Electronic Engineering at the University of Hong Kong. Engineering Education, 4(2), 70–75. DOI: https://doi.org/10.11120/ened.2009.04020070.

    10. Fan, Y., Evangelista, A., & Indumathi, V. (2021). Evaluation of remote or virtual laboratories in E-Learning engineering courses. 2021 IEEE Global Engineering Education Conference (EDUCON), 21–23 April 2021, Vienna, Austria, 136–143. DOI:10.1109/EDUCON46332.2021.9454067.

    11. Swain, N. (2012). Mathematical Modeling and Simulation using LabVIEW and LabVIEW MathScript. ASEE Annual Conference & Exposition. 2012, June. San Antonio, Texas. 25.917.1–25.917.12. DOI:10.18260/1-2-21674.

    12. Bilous, O., Hovorun, T., Berladir, K., & Dunaeva, M. (2021). Ensuring the Quality of Training Engineers in a Virtual Environment. In:, et al. Advanced Manufacturing Processes II . InterPartner 2020. Lecture Notes in Mechanical Engineering, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-68014-5_74.

    13. Catalog of measuring instruments. freedelivery.com.ua. Retrieved from: Мікрометр цифровий 0-12.7мм, 0.001мм точність, MicroUSB IP54. (Last access: 18.01.2022).

    14. National Instruments. (2003). LabVIEW Development Guidelines. Austin, Texas: USA. Retrieved from: https://www.ni.com/pdf/manuals/321393d.pdf. (Last access: 25.01.2022).

    15. Jerome, J. (2010). Virtual instrumentation using LabVIEW. New Delhi: PHI Learning Private Limited.

  • Creative Commons License by Author(s)