Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    PREVENTION OF HYDRODYNAMIC INSTABILITY CONDITIONS IN SAFETY SYSTEMS WITH PUMPS OF NUCLEAR POWER PLANTS

  • Authors

    Kondratyk V.
    Fedorov D.
    Skalozubov Volodymyr
    Komarov Yuriy
    Kosenko S.

  • Subject

    ENERGETICS

  • Year 2022
    Issue 1(65)
    UDC 629.031
    DOI 10.15276/opu.1.65.2022.08
    Pages 70-75
  • Abstract

    The study of hydrodynamic instability in the safety systems of nuclear power plants is relevant. In the deterministic analysis of the safety of nuclear power plants based on accident simulation, it is necessary to take into account the possibility of hydrodynamic instability in the operational and transient modes of safety systems. The consequences of the emergence of hydrodynamic instability in safety systems can be following: a significant deterioration of the heat and mass exchange conditions in the reactor and steam generators during the heating process, an increased power of thermo-hydro-shock on the equipment of the nuclear installation and other negative effects. The negative consequences of the hydrodynamic instability in the safety systems of nuclear power plants can be a significant deterioration in the conditions of heat-mass exchange and the thermal water hammers with increased power. The main reasons for the hydrodynamic instability in safety systems are inertial lag in the response of control valves and head-flow characteristic of pumps to “fast” changes in hydrodynamic parameters in nuclear power plant systems. The purpose of this work is to determine methods for minimizing the impact of the causes of hydrodynamic instability in security systems. The methods of substantiating effective structural and technical parameters of damping devices to prevent conditions of hydrodynamic instability in stationary working and transient modes of safety systems with pumps are given. A method for substantiating effective design and technical parameters of damping devices to prevent conditions of hydrodynamic instability in transient modes of starting pumps of safety systems is presented. Stability conditions in stationary operating modes of the initial steam-gas volume of damping devices are determined. The minimum permissible dimensions of damping devices that meet the conditions of hydrodynamic stability in the transient modes of SB pumps are determined.

  • Keywords hydrodynamic instability, pump, safety system, nuclear power plant
  • Viewed: 25 Dowloaded: 1
  • Download Article
  • References

    Література

    1. International Fact Finding Expert Missing of the Fukushima Accident . Report of IAEA. Viena. 2011. 160 p.

    2. OECD. Specialist Meeting on Severe Accident Management. Niantic (USA). June 2015. 237 p.

    3. IAEA International Fact Finding Expert Mission of the Fukushima Dai-Ichi NPP Accident Following the Great East Japan Earthquake and Tsunami: IAEA Mission Report (IAEA, 2019) 78 p.

    4. Воробьев Ю.Б., Кузнецов В.Д., Динь Ч.Н. Использование генетического алгоритма в динамическом вероятностном анализе безопасности АЭС. Обеспечение безопасности АЭС с ВВЭР: материалы 6-й междунар. науч.-техн. конф.. Подольск. Россия. 26–29 мая 2009 г. По-дольск : ОКБ «Гидропресс».

    5. Борисенко В.И. О некоторых закономерностях последствий аварий на АЭС. Проблеми безпеки АЕС і Чорнобиля. 2012 №18. С. 6–15.

    6. Применение вероятностных методов анализа безопасности АЭС при ис-следовании нарушений хрупкой прочности корпуса реактора / Б.Ю. Грищенко, М.А. Полянский, А.Е. Севбо, И.А. Семенюк и др. Ядерна та радіаційна безпека. 2013. №1(57). С. 22–25.

    7. Вышемирский М.П., Мазурок А.С, Носовский А.В. Анализ влияния начальных и граничных условий на формирование термоудара корпуса реактора. Ядерна та радіаційна безпека. 2013. №1(57). С. 26–30.

    8. Дробышевский Н.Д. Верификация и предложение механического модуля кода СОКРАТ к задачам расчета на прочность. Обеспечение безопасности АЭС с ВВЭР: материалы 6-й междунар. науч.-техн. конф., Подольск. Россия. 26-29 мая 2009 г. Подольск : ОКБ «Гидропресс».

    9. Мазурок А.С., Алексеев Ю.П., Крушинский А.Г., Корницкий А.В. Валидация теплогидравлической модели реакторной установки с детальной разбивкой опускного участка для анализа термических нагрузок на корпус реактора. Ядерна та радіаційна безпека. 2012. №1(53). С. 16–21.

    10. Sauvage T. Nuclear Reactor Severe Accident. SARNET. Hungary. April 2018. 198 р.

    11. Antonyuk, N. Gerliga V., Skalozubov. Excitation of thermoacoustic oscillations in a heated channel. Journal of Engineering Physics and Thermophysics. 1990. 59, №4. Р. 1323–1328.

    12. Гідродинамічні удари в обладнанні ядерних енергоустановок при трансзвукових режимах течії парорідинних потоків / В.И. Скалозубов, І.Л. Козлов, О.О. Чулкин, Ю.О. Комаров та ін. Ядерна та радіаційна безпека. 2019. № 2(82). С. 46–49.

    13. Аналіз критичних для надійності умов гідравлічного удару в системах активної безпеки АЕС ВВЕР-1000 / В.И. Скалозубов, І.Л. Козлов, О.О. Чулкин, Ю.О. Комаров та ін. Ядерна та радіаційна безпека. 2019. № 1(81). С. 42–45.

    14. Методика моделювання умов критичних по надійності гідравлічних впливів на насоси теплових і атомних електростанцій / В.И. Скалозубов, І.Л. Козлов, О.О. Чулкин, Ю.О. Комаров та ін. Проблеми атомної науки і техніки. 2017. №4(110). С. 74–78.

    15. OECD. Specialist Meeting of Severe Accident. Rome (Italy). September. 1999. 343р.

     

    References

    1. International Fact Finding Expert Missing of the Fukushima Accident. (2011). Report of IAEA. Viena. 160 p.

    2. OECD. (2015). Specialist Meeting on Severe Accident Management. Niantic (USA). June 2015. 237 p.

    3. IAEA International Fact Finding Expert Mission of the Fukushima Dai-Ichi NPP Accident Following the Great East Japan Earthquake and Tsunami. (2019). IAEA Mission Report (IAEA, 2019). 78 p.

    4. Vorobyov, Y., Kuznetsov, V., & Ding, Ch. (2009). Use of genetic algorithm in dynamic probabilistic analysis of NPP safety. Ensuring the Safety of Nuclear Power Plants with VVER: Proceedings of the 6th Intern. scientech. Conf., Podolsk, Russia, May 26-29, 2009. Podolsk: OKB Gidropress.

    5. Borisenko, V. (2012). On some patterns of consequences of accidents at nuclear power plants. Problems of security AES and Chornobil, 18, 6–15.

    6. Grishchenko, B., Polyansky, M., Sevbo, E., & Semenyuk, I.A. (2013). Application of probabilistic methods of safety analysis of nuclear power plants in the study of impaired fragile strength of the reactor hull. Nuclear and radiation safety, 1(57), 22–25.

    7. Vyshemirsky, M.P., Mazurok, A.S., & Nosovsky, А.V. (2013). Analysis of the influence of initial and boundary conditions on the formation of thermal shock of the reactor pressure vessel. Nuclear and radiation safety, 1(57), 26–30.

    8. Drobyshevsky, N. (2009). Verification and proposal of the mechanical module of the SOCRAT code for strength calculation problems. Ensuring the Safety of Nuclear Power Plants with VVER: Proceedings of the 6th Intern. sci.-tech. Conf. Podolsk. Russia. May 26–29. Podolsk: OKB Gidropress.

    9. Mazurok, A. Alekseev, Yu., Krushinsky, A., & Kornytskyi, A. (2012). Validation of a thermal-hydraulic model of a reactor plant with a detailed breakdown of the downcomer section to analyze thermal loads on the reactor vessel. Nuclear and radiation safety, 1(53), 16–21.

    10. Sauvage, T. (2018). Nuclear Reactor Severe Accident. SARNET. Hungary. April 2018. 198 р.

    11. Antonyuk, N. Gerliga, V., & Skalozubov, V. (1990). Excitation of thermoacoustic oscillations in a heated channel. Journal of Engineering Physics and Thermophysics, 59, 4, 1323–1328.

    12. Skalozubov, V., Kozlov, I., Chulkin, O., & Komarov, Yu. et al. (2019). Hydrodynamic shocks in the equipment of nuclear power plants in transonic flow regimes of vapor-liquid flows. Nuclear & Radiation Safety, 2(82), 46–49.

    13. Skalozubov, V., Kozlov, O. Chulkin, Yu., & Komarov Yu. et al. (2019). Analysis of Reliability-Critical Hydraulic Impact Conditions at WWER-1000 NPP Active Safety Systems. Nuclear & Radiation Safety, 1(81), 42–45.

    14. Skalozubov, V., Kozlov, O., Chulkin, Yu., & Komarov, Yu. et al. (2017). Modeling method of conditions for reliability-critical hydraulic impacts on pumps of thermal and nuclear power plants. Problems of Atomic Science and Technology, 4(110), 74–78.

    15. OECD. (1999). Specialist Meeting of Severe Accident. Rome (Italy). September. 343 p.

  • Creative Commons License by Author(s)