Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    METHODOLOGICAL BASES FOR DESIGNING DOUBLE-CIRCUIT CLOSED AIR PURIFICATION SYSTEMS

  • Authors

    Butenko Olexandr G.
    Karamushko A. V.
    Smyk S.
    Gushchakova V.

  • Subject

    ENERGETICS

  • Year 2022
    Issue 1(65)
    UDC 614.712
    DOI 10.15276/opu.1.65.2022.09
    Pages 76-82
  • Abstract

    The article considers the main methodological principles of designing closed double-circuit systems for air purification from polydisperse dust. This cleaning system has a significant advantage compared to its direct-flow counterparts, namely, it allows avoiding emissions of dust not captured in the cleaning apparatus into the atmosphere. This, predominantly fine-grained dust, is captured by repeatedly passing the flow through the catcher of the circulation circuit. That is, the avoidance of environmental pollution is achieved using a new scheme for the movement of a dusty gas stream to be cleaned. The introduction of an innovative flow scheme does not allow the use of traditional calculation methods; therefore, the purpose of the article is to formulate the main methodological approaches to the design of two-loop closed treatment systems. It is shown that the design of a purification system should consist of two main stages. The first is the calculation of the performance indicators of the system elements. It is based on data on the fractional composition of dust (differential distribution curve) and the characteristics of the trapping apparatus and is carried out for the main operating mode of the system (cleaning mode) and the final one (run-out mode). The proposed calculation method, unlike all existing ones, allows obtaining the value of cleaning indicators in dynamics. The second is the hydraulic calculation of the system, consisting of the main and circulation circuits. The calculation is proposed to be carried out by compiling the power balances of each circuit separately and, due to this, it is reasonable to select standard injection equipment for them. The calculation is based on hydraulic indicators, which are determined either by generally accepted hydraulic ratios (reference data), or by the graphs obtained in the course of research and given in the article.

  • Keywords purification system, calculation method, capture coefficient, power losses, fractional composition
  • Viewed: 29 Dowloaded: 0
  • Download Article
  • References

    Література

    1. Miller B.G., Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants. Advanced Power Plant Materials, Design and Technology / ed. by D. Roddy. Cambridge : Woodhead Publishing, 2010. P. 217–243.

    2. AQCS (Air Quality Control System) for Thermal Power Plants Capable of Responding to Wide Range of Coal Properties and Regulations / N. Omsne, T. Nagayasu et al. Mitsubishi Heavy Industries Tech-nical Review. 2017. 54,

    3. P. 55–62. 3. Reconstruction of gas-purification system and ladle–furnace unit at PAO Severstal’/ D.V.Stalinskii, V.D.Mantula et al. Stal’. 2016. 2, P. 77–81.

    4. Литвиненко А.В. Строительство блока газоочисных сооружений с коллекторной системой газо-ходов ферросплавных печей плавильного цеха №4 ПАО «Запорожский завод ферросплавов». Экология и промышленность. 2016. № 1. С. 36–40.

    5. Арисов С.Е., Рутковский О.А., Гук Н.С. Эффективная технология очистки газов вентиляционных систем агломерационного цеха ПАО «Никопольский завод ферросплавов», Экология и промыш-ленность. 2016. № 2. С. 14–19.

    6. Эффективная система газоудаления и газоочистки электродуговых сталеплавильных печей в ли-тейном цехе ПАО «Турбоатом» / Пирогов А.Ю., Швец М.Н., Фролов В.С., Кузнецова Л.Н., Гахе-ладзе Г.С. Экология и промышленность. 2015. № 3. С. 12–22.

    7. Winfield D., Cross M., Croft N., Paddison D. Geometry optimisation of a gravity dust-catcher using computational fluid dynamics simulation. Chemical Engineering and Processing: Process Intensifica-tion. 2012. 62. P. 137–144.

    8. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment / D. Zhou, Z. Luo, J. Jiang, et al. Powder Technology. 2016. 289. P. 52–59.

    9. Ng B.F., Xiong J.W., Wan M.P. Application of acoustic agglomeration to enhance air filtration efficien-cy in air-conditioning and mechanical ventilation (ACMV) systems. US National Library of Medicine. National Institut of Health. 2017. 12(6): e0178851. Published online 2017 Jun 8. DOI: 10.1371/journal.pone.0178851.

    10. Preliminary Experimental Study of Acoustic Agglomeration of Coal-fired Fine Particles / D. Zhou, Z. Luo, M. Fang, et al. Procedia Engineering. 2015. 102. P. 1261—1270.

    11. Бутенко А.Г., Смык С.Ю. Комбинированная система очистки воздуха. Энерго- технологии и ре-сурсосбережение. 2010. № 6. С. 66–69.

    12. Бутенко А.Г., Смык С.Ю., Мовила Д.А. Разделение твердой фазы полидисперсного потока по фракциям в комбинированной системе очистки. Экология и промышленность. 2009. Вып. 4. С. 68–70.


    References

    1. Miller, B.G. (2010). Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants. Advanced Power Plant Materials, Design and Technology. D. Roddy (Ed.) Cambridge: Woodhead Publishing, pp. 217–243.

    2. Omsne, N., & Nagayasu, T. et al. (2010). AQCS (Air Quality Control System) for Thermal Power Plants Capable of Responding to Wide Range of Coal Properties and Regulations. Mitsubishi Heavy Indus-tries Technical Review, 54, 3, 55–62.

    3. Stalinskii, D.V., & Mantula, V.D. et al. (2016). Reconstruction of gas-purification system and ladle–furnace unit at PAO Severstal’. Stal’, 2, 77–81.

    4. Litvinenko, A.V. (2016). Construction of a block of gas treatment facilities with a collector system of gas ducts for ferroalloy furnaces of smelting shop No. 4 of PJSC Zaporozhye Ferroalloy Plant. Ecology and Industry, 1, 36–40.

    5. Arisov, S.E., Rutkovsky, O.A., & Guk, N.S. (2016). Efficient technology for gas purification of ventila-tion systems of the sinter shop of PJSC “Nikopol Ferroalloy Plant”. Ecology and industry, 2, 14–19.

    6. Pirogov, A.Yu., Shvets, M.N., Frolov, V.S., Kuznetsova, L.N., & Gakheladze, G.S. (2015). Efficient sys-tem of gas removal and gas cleaning of electric arc steel-smelting furnaces in the foundry shop of PJSC “Turboatom”. Ecology and industry, 3, 12–22.

    7. Winfield, D., Cross, M., Croft, N., & Paddison, D. (2012). Geometry optimisation of a gravity dust-catcher using computational fluid dynamics simulation. Chemical Engineering and Processing: Pro-cess Intensification, 62, 137–144.

    8. Zhou, D., Luo, Z., & Jiang, J., et al. (2016). Experimental study on improving the efficiency of dust re-movers by using acoustic agglomeration as pretreatment. Powder Technology, 289, 52–59.

    9. Ng, B.F., Xiong, J.W., & Wan, M.P. (2017). Application of acoustic agglomeration to enhance air filtra-tion efficiency in air-conditioning and mechanical ventilation (ACMV) systems. US National Library of Medicine. National Institut of Health. 12(6): e0178851. Published online 2017 Jun 8. DOI: 10.1371/journal.pone.0178851.

    10. Zhou, D., Luo, Z., & Fang, M. et al. (2015). Preliminary Experimental Study of Acoustic Agglomeration of Coal-fired Fine Particles. Procedia Engineering, 102, 1261–1270.

    11. Butenko, A.G.  Smyk, S.Yu. (2010). Combined air purification system. Energy technologies and re-source saving, 6, 66–69.

    12. Butenko, A.G., Smyk, S.Yu.  Movila, D.A. (2009). Separation of the solid phase of a polydisperse flow by fractions in a combined purification system. Ecology and industry, 4, 68–70.

  • Creative Commons License by Author(s)