Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    CRITERIA FOR CONDITIONS OF HYDRODYNAMIC INSTABILITY OF THE СOOLANT IN ACCIDENTS WITH REACTOR CIRCUIT LEAKS

  • Authors

    Skalozubov Volodymyr
    Komarov Yuriy
    Dorozh Оlga
    Kondratyk Vadim
    Filatov Volodymyr

  • Subject

    ENERGETICS

  • Year 2022
    Issue 2 (66)
    UDC 629.031
    DOI 10.15276/opu.2.66.2022.06
    Pages 52-57
  • Abstract

    Modern deterministic codes for modeling the safety-dominant nuclear power plant accident groups with reactor circuit leaks (including inter-circuit leaks in steam generators) do not determine the conditions and consequences of the processes of hydrodynamic instability of the coolant. Work on preventing conditions of hydrodynamic instability was carried out for individual safety systems of the reactor installation in which specific equipment is installed. The occurrence of hydrodynamic instability of the coolant changes the conditions of heat exchange in the active zone of the reactor, leads to cyclic high-amplitude hydrodynamic loads on the internal body structures and other negative effects. The purpose of the presented work is to create methods for modeling conditions of hydrodynamic instability of the coolant during accidents with reactor circuit leaks. The method of implementation of the work is based on the development of a thermodynamic method for determining the conditions of hydrodynamic instability in the conditions of accidents with reactor circuit leaks. On the basis of the approximate method, the minimum dimensions of the reactor circuit leaks from the HPP in the area of hydrodynamic instability of the coolant were determined: for the emergency cooling system of the reactor active zone with high-pressure pumps - 400 mm; for the system of emergency cooling of the active zone of the reactor with low-pressure pumps - 100 mm. The occurrence of hydrodynamic instability of the coolant changes the conditions of heat exchange in the active zone of the reactor, leads to cyclic high-amplitude hydrodynamic loads on the internal body structures and other negative effects. The original method of determining the criteria for the occurrence of hydrodynamic instability of the coolant at the stage of starting the pumps of safety systems in the event of an accident with reactor circuit leaks is presented

  • Keywords accident, hydrodynamic instability, leaks, reactor circuit
  • Viewed: 25 Dowloaded: 4
  • Download Article
  • References

    Література

    1. Науково-технічні основи заходів підвищення безпеки АЕС з ВВЕР. Інститут проблем безпеки АЕС. / За ред. О.О. Ключнікова. Чорнобиль : Національна академія наук України, 2012. 296 с.

    2. OECD. Specialist Meeting on Severe Accident Management. Niantic (USA). June 2015. 237 p.

    3. Борисенко В.И. О некоторых закономерностях последствий аварий на АЭС. Проблеми безпеки АЕС i Чорнобиль. 2012. № 18. С. 6–15.

    4. Вышемирский М.П., Мазурок А.С, Носовский А.В. Анализ влияния начальных и граничных условий на формирование термоудара корпуса реактора. Ядерна та радіаційна безпека. 2013. № 1(57). С. 26–30.

    5. Actual problems of thermal physics of design and severe accidents of nuclear power units / I. Sharaievskii, N. Fialko, A. Nosovsky, L. Zimin, G. Sharaievskii. Nuclear & Radiation Safety. 2016. № 2(70). P. 32–36.

    6. Попередження умов гідродинамічної нестійкості у системах безпеки з насосами ядерних енергоустановок / В.А. Кондратюк, В.И. Скалозубов, Ю.А. Комаров, С.И. Косенко, Д.О. Федоров. Праці Одеського політехнічного університету. 2022. № 1(65). С. 70–75. DOI: 10.15276/opu.1.65.2022.08.

    7. Шараевский Г.И. Проблеми підвищення показників надійності розрахункового визначення кризи тепловіддачі у водоохлоджуваних реакторах на базі комп’ютерних теплогідравлічних кодів. Ядерна та радіаційна безпека. 2018. №3(79). С. 16–22. DOI: https://doi.org/ 10.32918/nrs.2018.3(79).03.

    8. Мазурок А.С., Алексеев Ю.П., Крушинский А.Г., Корницкий А.В. Валидация теплогидравличе-ской модели реакторной установки с детальной разбивкой опускного участка для анализа тер-мических нагрузок на корпус реактора. Ядерна та радіаційна безпека. 2012. № 1(53). С. 16–21.

    9. Дємєнков В.М., Шугайло О.П., Мустафін М.А., Макаренко М.В. Оцінка цілісності обладнання та трубопроводів АС на основі пов'язаних розрахунків в ANSYS і RELAP CODE. Ядерна та радіаційна безпека. 2020. №3(87). С. 46–54. DOI: https://doi.org/10.32918/nrs.2020.3(87).06.

    10. Дробышевский Н.Д. Верификация и предложение механического модуля кода СОКРАТ к задачам расчета на прочность. Обеспечение безопасности АЭС с ВВЭР: материалы 6-й междунар. науч.-техн. конф., Подольск. 26-29 мая 2009 г. (Подольск: ОКБ «Гидропресс», 2009).

    11. Грищенко Б. Ю., Полянский М. А., Севбо А. Е., Семенюк И. А. Применение вероятностных методов анализа безопасности АЭС при исследовании нарушений хрупкой прочности корпуса реактора. Ядерна та радіаційна безпека. 2013. № 1(57). С. 22–25.

    12. Sauvage E., Musoyan G. Nuclear Reactor Severe Accident Analysis: Applications and Management Guidelines. SARnet 17, Budapest, Hungary, April 1–11, 2008.

    13. Derakhshan S., Nourbakhsh A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Experimental Thermal znd Fluid Science. 2008. V. 32, №8. P. 1620–1627.

    14. Analysis of Reliability-Critical Hydraulic Impact Conditions at WWER-1000 NPP Active Safety Systems / V. Skalozubov, I. Kozlov, O. Chulkin, Yu. Komarov, O. Piontkovskyi. Nuclear & Radiation Safety. 2019. 1(81). P. 42–45. DOI: https://doi.org/10.32918/nrs.2019.1(81).07.

    15. Antonyuk N., Gerliga V., Skalozubov V. Excitation of thermoacoustic oscillations in a heated channel. Journal of Engineering Physics and Thermophysics. 1990. 59, 4. P. 1323–1328.

    16. Water hammers in transonic modes of steam-liquid flows in NPP equipment / V. Skalozubov, N. Bilous, D. Pirkovskiy, I. Kozlov, Yu. Komarov, O. Chulkin. Nuclear & Radiation Safety. 2019. 2(82). P. 46–49. DOI: https://doi.org/10.32918/nrs.2019.2(82).08.

    References

    1. Klyuchnikova, О. (Ed.) (2012). Scientific and technical basis of measures to improve the safety of NPPs with VVER. Chernobyl: Institute of NPP Safety Problems of the National Academy of Sciences of Ukraine.

    2. OECD. (2015). Specialist Meeting on Severe Accident Management. Niantic (USA). June 2015. 237 p.

    3. Borisenko, V. On some patterns of consequences of accidents at nuclear power plants. Problems of security AES and Chornobil, 18 (2012). Р. 6–15.

    4. Vyshemirsky, M., Mazurok, A.S., & Nosovsky, А. (2013). Analysis of the influence of initial and boundary conditions on the formation of thermal shock of the reactor pressure vessel. Nuclear and radiation safety, 1(57), 26–30.

    5. Sharaievskii, I., Fialko, N., Nosovsky, A., Zimin, L., & Sharaievskii, G. (2016). Actual problems of thermal physics of design and severe accidents of nuclear power units. Nuclear & Radiation Safety, 2(70), 32–36.

    6. Kondratyk, V., Skalozubov, V., Komarov, Ju., Kosenko, S., & Fedorov, D. (2022). Prevention of hydrodynamic instability conditions in safety systems with pumps of nuclear power рlants. Proceeding of Odessa Polytechnic University, 1(65), 70 – 75. DOI: 10.15276/opu.1.65.2022.08.

    7. Sharaevsky, G. (2018). Problems of increasing the reliability of the calculated determination of the heat transfer crisis in water-cooled reactors based on computer thermohydraulic codes. Nuclear & Radiation Safety, 3(79), 16–22. DOI: https://doi.org/10.32918/nrs.2018.3(79).03.

    8. Mazurok, A., Alekseev, J., Krushynskyy, A., & Kornytskyi, A. (2012). Validation of the thermal-hydraulic model of the reactor plant with a detailed breakdown of the downcomer section for the analysis of thermal loads on the reactor pressure vessel. Nuclear & Radiation Safety, 1(53), 16–21.

    9. Diemienkov, V., Shugailo, O., Mustafin, M., & Makarenko, M. (2020). Assessment of the integrity of the equipment and pipelines of the AS based on related calculations in ANSYS and RELAP CODE. Nuclear & Radiation Safety, 3(87), 46–54. DOI: https://doi.org/10.32918/nrs.2020.3(87).06.

    10. Drobyshevsky, N. (2009). Verification and proposal of the mechanical module of the SOCRAT code for strength calculation problems. Ensuring the Safety of Nuclear Power Plants with VVER: Proceedings of the 6th Intern. sci.-tech. Conf. Podolsk. May 26–29. 2009 (Podolsk: OKB Gidropress, 2009).

    11. Gryschenko, B., Polyanskyi, M., Sevbo, O., & Semenyuk, I. (2013). Application of probabilistic methods for NPP safety analysis in the study of violations of the brittle strength of the reactor pressure vessel. Nuclear & Radiation Safety, 1(57), 22–25.

    12. Sauvage, E., & Musoyan, G. (2008). Nuclear Reactor Severe Accident Analysis: Applications and Management Guidelines. SARnet 17, Budapest, Hungary, April 1–11, 2008.

    13. Derakhshan, S., & Nourbakhsh, A. (2008). Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Experimental Thermal znd Fluid Science, 32, 8, 1620–1627.

    14. Skalozubov, V., Kozlov, I., & Chulkin, O. et al. (2019). Analysis of Reliability-Critical Hydraulic Impact Conditions at WWER-1000 NPP Active Safety Systems. Nuclear & Radiation Safety, 1(81), 42–45. DOI: https://doi.org/10.32918/nrs.2019.1(81).07.

    15. Antonyuk, N., Gerliga, V., & Skalozubov, V. (1990). Excitation of thermoacoustic oscillations in a heated channel. Journal of Engineering Physics and Thermophysics, 59, 4 1323–1328.

    16. Skalozubov, V., Bilous N., & Pirkovskiy D., et al. (2019). Water hammers in transonic modes of steam-liquid flows in NPP equipment. Nuclear & Radiation Safety, 2(82), 46–49. DOI: https://doi.org/10.32918/nrs.2019.2(82).08.

  • Creative Commons License by Author(s)