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DIAGNOSTICS OF IN-CORE NEUTRON MONITORING
SYSTEM BASED ON ARTIFICIAL NEURAL NETWORK

B.I. bopucenxo, B.B. I'opanuyk, A.B. Hocoeécvkuii. JJiaTHOCTHKAa BHYTPIlIHbO30HHOI'0 HEHTPOHHOIO KOHTPOJII0 HAa OCHOBI
3aCTOCYBaHHSI HellpOHHMX Mepe:k. OfHier0 3 3aJja4 JiarHOCTUKM BHYTPIiLIHBO30HHOTO HEHTPOHHOTO KOHTPOIIO € 3aja4a JiarHOCTHKU
JETEKTOPIB MPSIMOTO 3apsify, a CaMe BU3HAYCHHS JOCTOBIPHOCTI CHTHANIB, TOOTO BU3HAYCHHS AETEKTOpA MPSMOTO 3apsiay SIKii BiIMOBHB.
BaxiuBo MaTH 3MOT'y OLIHUTH SHEPrOBHIIJICHHS B TEIUIOBUIUIBHIN 30ipLi 3 IIMM JETEKTOPOM MPSMOro 3apsiay. B cTarTi o6roBoprooThCs
0COOJIMBOCTI BiTHOBJICHHS CUTHAILY JI€TEKTOPIiB HPSIMOTO 3apsily Ha OCHOBI 3aCTOCYBAHHS TEXHOJIOTIT HeMPOHHNX Mepex. [1iy BinHOBIEHHAM
CUTHAJy BiJJMOBMBIIUTO JETEKTOpa MPSIMOTO 3apsily MAeThCS Ha yBa3li MOJEJbHE BIiATBOPEHHS CHTHANY, BiJICYTHBOTO 4epe3 (izudHe
HOLIKOKEHHs eTekTopa. HaBueHa HelipoHHa Mepexa, Ha OCHOBI MOHITOPUHTY BXiIHOI iH(opMaLlii, MOXe 3 BUCOKUM CTYIIEHEM TOYHOCTI
nependavnTy nosiBy nedekTiB B 0OJaJHAHHI i OLIIHUTH CTYIIHb HOr0 TEXHIYHOTO CTaHy. PO3IISIHYTO Mepexi TPhOX PI3HUX apXiTeKTyp: Oe3
MPUXOBAHHUX IIApiB, 3 OJHUM NPHXOBAHKM LIAPOM Ta 3 IBOMA MPHXOBaHMMH mrapamu. Ha BXin HEHpOHHOI Mepei MoJaBajncsi CHIHAIN
JIETEKTOPIB MPSIMOTO 3aps/Iy Bif Pi3HOI KiJIbKOCTI KaHaJIiB HEHTPOHHUX BUMIipIOBaHb — BiJ 3 710 63, y AKOCTi BUXiJJHOTO CUTHAITY CIYTYBAaJIH
JIETEKTOPH IPSIMOTO 3apsily KaHaliB HEHTPOHHHX BHMIPIOBaHb, IO HepeBipsiBCsS. MopemoBaHHs OyJ0 NMPOBEACHO IS PI3HUX JCTEKTOPIB
MPSIMOTO 3apsily SIK 33 POKOM BHMKOPHCTAaHHS, TaK 1 3a MICIIEM pO3TallyBaHHS B aKTHUBHIW 30HI, a TaKOX AJIsI PI3HUX CHEProOJIOKIB Ta
MaJUBHUX KammaHii (26 ta 27 xammanii 3AEC-5, 27 ta 28 xammanii XAEC-1, 11 Ta 12 xamnanii XAEC-2). ByB nocmiukeHuid BIUTHB
KIUJIBKOCTI BXIZHHX CHTHAJIB, @ TAaKOX BIUIMB KiIBKOCTI NMPUXOBAaHMX IIApiB Ha IOXMOKY BM3HAUYCHHS BUXIJHOTO curHanmy. IIpoBeneHo
MOPIBHAHHS AJITOPUTMIB HaBUaHHS HEHPOHHMX Mepex: JleBenOepra-Mapksapara Ta L-BFGS. [TokazaHa BaxiuBicTs BHOOPY 1Sl HEHPOHHOT
Mepeki TaKkuX BXIJHUX CHTHAIIB, IO Haif0inblle BH3HAYAIOTh XapakTep BHXITHOTO CHrHady. Iloka3zaHO, IO BiTHOBJICHHS CHTHAJIB
JETEKTOPIB HPSIMOTO 3apsiy MOXKJIMBE 3 IOXHOKOI He Oumbmie 2 % 3a yMOBHM HaBYaHHS Ha INMPOKOMY [Jiana3oHi JaHHX, IO JIO3BOJISIE
3a0€3MeUUTH KOHTPOJIb EHEPrOPO3HOALTY B TEIUIOBUALIBHIM 301pIli 3 JaHUM JETEKTOPOM MPSIMOTO 3apsiLy.

Kniouosi cnoea: NETEKTOp TPSAMOTo 3apsjy, KaHaJl HEHTPOHHMX BHMIPIOBaHb, CHCTEMa BHYTPINIHBOPEAKTOPHOTO KOHTPOIIO,
HeWpOHHa Mepexka, AiarHOCTHKa CHCTeM, JOCTOBIPHICTh CHTHAJIIB

V. Borysenko, V. Goranchuk, A. Nosovskyi. Diagnostics of in-core neutron monitoring system based on artificial neural network.
One of the tasks of the diagnostics of in-core neutron control is the task of diagnostics of self-powered neutron detectors, namely the
determination of reliability of self-powered neutron detectors signal, that is, the detection of the fault self-powered neutron detectors SPND.
It is important to be able to estimate the power density in the fuel assembly with this self-powered neutron detector. The article discusses the
features of the restoration of the self-powered neutron detectors signal based on the application of neural network technology. The restoration
of the self-powered neutron detector signal means a model-based restoration of a signal that is not available due to physical damage of
detector. A trained neural network, based on the monitoring of input information, can with a high degree of accuracy predict the appearance
of defects in the equipment and assess the degree of its technical condition. The neural networks of three different architectures were
considered: without hidden layers, with one hidden layer and two hidden layers. As the input of the neural network were taken self-powered
neutron detectors signals from the various number of neutron flux measuring channels — from 3 to 63. As the output of the neural network
were taken self-powered neutron detectors signals that were chosen for prediction. The simulation was carried out for different self-powered
neutron detectors, both in terms of year of use and location in the core, as well as for different power units and fuel campaigns (26th and 27th
fuel campaigns of ZNPP-5, 27th and 28th fuel campaigns of KhNPP-1, 11th and 12th fuel campaigns of KhNPP-2). The influence of the
number of input signals, as well as the effect of the number of hidden layers on the error of the determination of the output signal, were
investigated. A comparison of neuronal training algorithms (Levenberg-Marquardt and L-BFGS) was carried out. It is shown the importance
of choosing such input signals for the neural network, which determine the nature of the output signal most. It is shown that the restoration of
self-powered neutron detectors signals is possible with an error not more than 2%, provided neural network learning on a wide range of data,
which allows to control the energy distribution in the fuel assembly with fault self-powered neutron detector.

Keywords: self-powered neutron detector, neutron flux measuring channel, in-core monitoring system, neural network, system
diagnostics, signal reliability

Introduction

An in-core monitoring system is provided to control the distribution of energy in the VVER reac-
tor core. This system provides the operator with operational information on energy release in the core
based on the signals of self-powered neutron detectors (SPND) and coolant temperature sensors. The
output signal of the SPND is proportional to the density of the neutron flux at its location, which in
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turn also determines the energy release in the nearest fuel elements. In order to control the linear ener-
gy release of fuel when operating at rated power, it is necessary to ensure compliance with the regula-
tory requirements for the number of operational SPND. Detectors that malfunction should be detected
in in-core monitoring system (ICMS) and be able to evaluate energy generation in a fuel assembly
(FA) in which energy control was lost due to damage to the SPND or for other reasons.

Analysis of recent publications

The reliability of the input information in the ICMS was investigated in [1, 2]. In this article, the
reliability of information that is defined in the ICMS is the property of information to be correctly per-
ceived and uniquely interpreted for making management decisions. In [2], similar algorithms were
used to analyze the reliability of the input information as in [1], but in real time. Estimates were per-
formed on the basis of: analysis of statistical characteristics of channels, comparison with regime val-
ues and setpoints, comparison with information in parallel control channels [2]. At the same time, the
technology of neural networks [3 — 5] showed its perspective for the analysis of the reliability of the
input information of NPP control systems, which is considered in this paper in the problem of ICMS
diagnostics.

The purpose and objectives of the study

The purpose of the study is to ensure the control of the reliability of the information of the meas-
uring channels in the ICMS. The task of diagnosing SPND is to search for a failed SPND. This paper
presents the results of a study on the possibility of model recovery of a failed SPND signal based on
the use of neural network technology. When the signal of the failed SPND is restored, the model re-
produces the signal missing due to physical damage to the detector.

How Neural Networks Work

Neural networks are a simplified model of the biological nervous system. They are used in solving
classification and forecasting problems and can be applied to almost any task when there is a relationship
between input variables and output (predicted), even when the relationship has a complex structure. A neu-
ral network is a collection of neural elements that are somehow connected to each other by relationships
determined by weighting factors. The peculiarity of neural networks is that they are capable of learning.
The learning process involves adjusting the weights.

The block diagram of the neuron model is presented in Fig. 1.

Bias

Activation function

e (v) —>

Input signals
o

Adder Output signal

Synaptic scales

Fig. 1. Model of a neuron

Each synapse (ligament) is characterized by its weight. The signal x; at the input of a synapse J
that is associated with a neuron k is multiplied by weight . The synaptic weight of the neuron can be
both positive and negative.

The adder u, sums the input signals weighted relative to the corresponding neuron synapses. An
externally added offset may be included in the model of the neuron, denoted as by. The offset value by
determines the decrease or increase of the input signal supplied to the activation function.
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The activation function ¢ limits the amplitude of the output signal of the neuron. For example,
the normalized range of neuron output amplitudes may lie in the range [0, 1] or [-1, 1]. Therefore, the
model of the neuron is described by the following equations:

m
Uk = 2 Oy X;
j=1
Vi = Uk + D,
Y = @(V) ,
where X, Xz, ..., Xm — input signals;
Ok1, Wkz, ..., Om — Synaptic weights of the neuron k;
ux — linear output combination of input signals;
b — bias;

Vi — activation potential;
o(v) — activation function;
yk — the output signal of the neuron.

The neural network can be described using architecture and synaptic scales. There are three fun-
damental classes of architecture: single-layer direct distribution networks, multi-layer direct distribu-
tion networks, recurrent networks [6].

Modeling based on the use of neural network technology

The simulation was performed using the alglib cross-platform numerical analysis library [7]. The
alglib library supports C ++, C #, Pascal, VBA, and Windows, Linux, Solaris. It used the C # pro-
gramming language and the Windows operating system.

Neural networks were built with no hidden layers, with one hidden layer and two hidden layers.
Network connections go from the input layer to the first hidden (if any), then to the second (if any),
then to the original layer. Research on different neural network models was conducted to select the
optimal neural network model.

Neural network training was conducted on the first five datasets and testing on the next fifteen.
The time interval between the datasets was one week.

The simulation was performed for different SPND both by year of use and by location in the core
area, as well as for different power units and fuel campaigns (26 and 27 ZNPP campaigns-5, 27 and 28
KhNPP campaigns-1, 11 and 12 KhNPP campaigns-2).

The influence of the number of input signals and the influence of the number of hidden layers on
the error of determining the output signal was investigated. Comparison of learning algorithms of neu-
ral networks: Levenberg-Marquardt and L-BFGS.

Choosing the optimal neural network scheme for the recovery of SPND signals

The choice of the neural network scheme was performed according to the criterion of minimum
deviation of the recovered SPND signal from the real SPND signal by 10 — 20 steps after simulating
the fact of physical damage of the SPND.

The influence of the number of input signals.

On example 11 of the KhNPP-2 fuel campaign (see Fig. 2) three cases were considered (see Table 1):
in the first calculation, the SPND signals from 63 NFMC were given, in the second calculation — from
the 7 nearest NFMC (FA-137), FA-124, FA-111, FA-98, FA-99, FA-87, FA-88), in the third calcula-
tion — from 11 NFMC (FA-137, FA-154, FA-152, FA-129, FA-104, FA-50, FA-27, FA-10, FA-12,
FA-35, FA-60), which were located in similar locations of the output NFMC in 30 ° symmetry sectors.

In all the considered cases, the current of the SPND NFMC-57, FA-114 served as the output sig-
nals (see Fig. 3). It is worth noting that the nearest neighboring NFMC to NFMC-57 is located through
one fuel assembly, and FA-114 is located in the penultimate row — on the periphery of the core.
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Table 1

Variation of the calculation from the actual value for the currents of SPND NFMC-57, KhNPP-2, 11th fuel
campaign, depending on the number of input NFMC

No The number of The number of Location of input NFMC in the The maximum
B input NFMC output NFMC core deviation, %
1 63 All core 6.52
2 7 1 Near input NFMC 4.99
3 11 Symmetric across sector 30° 1.82
Ne FA W WD ANRDBUBBTBARNRDUB BT R D0

Year of NFMC '

-

Year of NFMC
-1

_2 8

Fig. 2. Chartogram of the KHPP-2 11th fuel loading

15

1.4

13

1.2
811 /:.:‘#W
=
3 1 —8- SPND-1}—
5 0.9 / .’ il 4 | —e— SPND-2| |
8 / —A— SPND-3
& 08 / —— SPND-4[ |

—8— SPND-5|

0.7
06 —- SPND-6
' —@ SPND-7| |
05 1 1 1 1
1 2 3 4 5 6 7 & 9 1011 12 13 14 15 16 17 18 19 20

Ne datas set
Fig. 3. Actual value of SPND NFMC-57 (FA-114) currents for the KhNPP-2 11th fuel campaign

Tables 2 — 4 present an error in the recovery of currents of the SPND NFMC-57 using neuralnet-
works. The neural network architecture with no hidden layers was selected. The Levenberg-Marquardt
algorithm was used to train neural networks. Training was conducted on the first five datasets and test-
ing on the subsequent fifteen.
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Table 2

The deviation of the calculated value of the current of the SPND from the actual according to item No. 1 of Table 1

Deviation, %

Ne set Datastype I ~spND-1 [ SPND-2 | SPND-3 | SPND-4 | SPND-5 | SPND-6 | SPND-7
1 2002 | 002 | -002 | 002 | -002 | -002 | —0.02
2 2003 | 003 | —002 | —002 | —002 | -001 | 001
3 Training 2002 | 002 | —002 | —003 | —004 | -005 | 006
4 2002 | 002 | —002 | —0.02 | 001 | 001 0
5 2001 | 001 | —001 | —001 | —001 | -001 | 001
6 2021 | 01 | —012 | —025 | —048 | -044 | —0.19
7 2021 | 01 | —031 | —062 | -103 | -105 | -1.01
8 2092 | 015 | —032 | —104 | —248 | -—263 | -1.13
9 2062 | 007 | —025 | -1.08 | —239 | —271 | —2.09
10 20.82 0 2037 | -131 | 289 | 32 | -233
11 20.71 01 2035 | -134 | —282 | 817 | -297
12 2072 | 013 | —051 | —13 | 242 | —247 | —2.32
13 Test 2051 | 001 | —055 | —149 | —261 | -266 | -3.35
14 2048 | 014 | —056 | —167 | —293 | -305 | -3.88
15 2049 | 022 | —062 | -18 | 331 | 327 | -3.95
16 2047 | 039 | —061 | —1.99 | 367 | 362 | —423
17 2047 | 039 | —061 | -1.99 | —367 | 362 | —423
18 20.23 0.6 064 | —223 | —396 | 384 5
19 0.32 115 | —056 | -266 | —473 | —451 | -6.06
20 0.51 131 | 058 | -283 | 497 | —469 | —652

Table 3

Deviation of the calculated value of the current of the SPND from the actual according to item No. 2 Table 1

Deviation, %

Ne set Datas tape SPND-1 | SPND-2 | SPND-3 | SPND-4 | SPND-5 | SPND-6 | SPND-7
1 001 | —0.03 | -004 | —0.04 | -003 | —-0.02 0.01
2 2004 | —0.05 | —005 | —0.04 | -002 0 0.01
3 Training 0 0.03 0.04 0.04 002 | —0.09 | -016
4 2004 | —0.05 | —005 | —0.04 | -002 0.01 0.05
5 2001 | —0.01 | 001 | —0.01 | -001 | —0.01 | -001
6 203 2012 | —0.07 | -012 | —023 | -014 | —oo01
7 2034 201 2018 | —034 | -057 | —056 | -074
8 153 | —0.22 01 2018 | -1.18 14 20.73
9 2119 0 0.13 2033 | -127 | -168 | -1.78
10 Z145 | —0.08 0.06 204 148 | -1.82 | -1.79
11 131 0 0.02 2055 | -157 | -1.96 | —2.48
12 112 | —026 | -031 0.7 124 | -112 | -1.48
13 Test 085 | -014 | -043 | -096 | -143 12 233
14 2086 | —0.01 | —037 | -1.08 | -159 | -145 | —281
15 20,97 0.04 204 2104 | -1.75 | -144 | —2.78
16 ~1.06 0.22 2027 | -1.05 | -1.92 | -167 | -3.09
17 ~1.06 0.22 2027 | -1.05 | -1.92 | -167 | -3.09
18 20,82 0.45 2026 | -1.19 2 2165 | —3.69
19 2052 0.93 2003 | -129 | —223 | -1.82 | -458
20 20.36 111 0 2135 | —233 | -186 | -4.99

ENERGETICS



38 ISSN 2076-2429 (print)

[Mpani Opecbkoro nojitexHiyHoro yHiBepeutety, 2019. Bur. 2(58) ISSN 2223-3814 (online)

Table 4
The deviation of the calculated value of the current SPND from the actual according to item No. 3 Table 1
Ne set Datas tape Deviation. %
SPND-1 | SPND-2 | SPND-3 | SPND-4 | SPND-5 | SPND-6 | SPND-7
1 -0.01 0 -0.01 -0.01 0 0 0.01
2 -0.04 -0.04 -0.04 -0.03 0 0.03 0.03
3 Training -0.04 -0.05 -0.07 -0.1 -0.17 -0.22 -0.23
4 -0.01 0.01 0.02 0.04 0.08 0.1 0.1
5 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
6 -0.1 0.07 0.1 0.02 -0.07 0.03 0.28
7 -0.05 0.16 0.08 -0.03 -0.02 0.18 0.14
8 -0.55 0.32 0.36 -0.01 -0.61 -0.24 1.24
9 -0.38 0.36 0.26 -0.13 -0.42 -0.09 0.43
10 -0.53 0.4 0.29 -0.15 -0.61 -0.23 0.52
11 -0.45 0.41 0.23 -0.19 -0.36 0.12 0.16
12 -0.41 0.36 0.27 -0.05 -0.13 0.37 0.33
13 Test -0.28 0.44 0.24 -0.12 -0.02 0.56 -0.43
14 -0.33 0.52 0.26 -0.18 -0.03 0.57 -0.67
15 -0.39 0.63 0.28 -0.15 -0.15 0.62 -0.54
16 -0.45 0.74 0.29 -0.24 -0.2 0.68 -0.48
17 -0.45 0.74 0.29 -0.24 -0.2 0.68 -0.48
18 -0.44 0.85 0.3 -0.3 -0.1 0.86 -1.06
19 -0.31 1.19 0.45 -0.35 0.01 1.18 -1.52
20 -0.27 1.3 0.47 -0.37 0.06 1.31 -1.82

From the given data (Table 1) it is clear that the higher number of input signals of the neural net-
work does not lead to better evaluation of the output signals. Therefore, we recommend that you limit
yourself to only those inputs that most determine the output ones. A decrease in the number of NFMC
inputs from 63 to 7 adjacent to the NFMC output resulted in a decrease of the maximum deviation of
1.53 %, and the use of NFMC inputs symmetrically located with the NFMC output in the 30° sym-
metry sectors resulted in a decrease in the maximum deviation by 3.17 %.

Investigation of the influence of the number of hidden layers

On the example of the KHPP-1 27th fuel campaign (see Fig. 4). three different neural network
architectures (see Table 5) are considered: where no hidden layers, one hidden layer, and two hidden
layers. The hidden layers included 20 neurons each.

Table 5

Deviation of calculation from actual value for SPND currents NFMC-2, KhNPP-1, 27th fuel loading, depending
on the number of hidden layers

No The number of | The number of Location of input NFMC Number of Max deviation,
B input NFMC output NFMC in the core hidden layers %

1 ical 2 5.7

2 3 1 R 1 3.22

3 ¢ sector 0 1.45

The output signal was the current of the SPND NFMC-2 (FA-81), and the output signal - NFMC
in the sectors of symmetry 30 ° (FA-69, FA-83, FA-96). The actual values of the output signals are
presented in Fig. 5. The neural network was trained by the Levenberg-Marquardt algorithm. Training
was conducted on the first five datasets and testing on the subsequent fifteen.

EHEPTETHUKA



ISSN 2076-2429 (print) . . N 39
ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 2(58), 2019

T 7 18 19 20 21 22 23 24 25 26 27 B 20 30 3 32 33 34 35 36 37 I8 39 40 41 42

Ne FA

10 181 162

.
NFMC year * ‘ ,

FA year

4

-1 5

8

-2

1.15
1.10
S 1.05
g2
= 1.00
et
5 —&- SPND-1
é 0.95 —e— SPND-2
—&— SPND-3
& 0.90 —>- SPND-4
—@ SPND-5
0.85 —- SPND-6
—@ SPND-7
0.80

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
No datas set

Fig. 5. Actual value of SPND NFMC-2 (FA-81) for the KHPP-1 27th fuel campaign

Higher number of hidden layers does not necessarily result in better evaluation of the output sig-
nals. It may be advisable to use neural networks without hidden layers to solve this problem. Thus, in
this case, the neural network without hidden layers showed the maximum deviation of the calculated
current of the SPND NFMC-2 from the actual level of 1.45 %, the neural network with one hidden
layer — 3.22 %, and the neural network with two hidden layers — 5.7 %.

Comparison of neural network training algorithms

On the example of the 26th and 27th fuel campaigns of ZAES-5 (see Figs. 6, 7) there two algo-
rithms for training neural networks (Levenberg-Marquardt and L-BFGS (see Table 6)) are considered.
To the input of the neural network were signaled SPND from NFMC, which were in sectors of sym-
metry 30 ° similar to the original NFMC.

For the 26th fuel campaign. the signals of the SPND NFMC in FA-76, FA-150, FA-156, FA-88,
FA-14 were fed to the input, and the SPND NFMC in FA-8 served as the output signal (see Fig. 8).
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For the 27th fuel campaign, the signals of the SPND NFMC in FA 141, FA-146, FA-87, FA-23, FA-
18 were fed to the input, and the SPND NFMC in FA-8 served as the output signal (see Fig. 9).

NQFA L) I.'} I.! ISIQFIRI !_')'IJ]_! '2:'25'1.?2:&293.03]!;2]3!:(]!36]?383:.!10{] 42
NFMC year
3
FAyear oy L OO 423
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Fig. 6. Cartography of the 26th ZAES-5 fuel loading
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Fig. 7. Cartography of the 27th ZAES-5 fuel loading

Table 6

The deviation of the calculation from the actual value for the currents of the SPND ZAES-5 depending on the
algorithm of training

No Fuel campaign Ne FA Algorithm of training Max diviation, %
1 26 8 L-BFGS 5.47

2 Levenberg-Marquardt 1.66

3 97 77 L-BFGS 3.99

4 Levenberg-Marquardt 101.27
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Fig. 8. Actual value of SPND NFMC-12 (FA-8) currents for the ZAES-5 26th fuel campaign
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Fig. 9. Actual value of SPND NFMC-8 (FA-77) currents for the ZAES-5 27th fuel campaign

The neural network architecture with no hidden layers was selected. Training was conducted on
the first five datasets. and testing on subsequent ones.

Fig. 7 presents the error of current recovery SPND NFMC-12 (FA-8) by the algorithm L-BFGS,
and in Table, 8 according to the Levenberg-Marquardt algorithm for the ZAES-5 26th fuel campaign.
As can be seen from the Table, 7, 8 Levenberg-Marquardt's training algorithm showed better recovery
of DPF currents. This trend is observed for most calculations. although there are opposite cases.

It is worth noting that the current values of the SPND in the eighth data set are very different
from those used in the training of the neural network.

As can be seen from the Table 9, 10, the L-BFGS training algorithm showed a much better re-
covery of SPND currents for the eighth data set. for other datasets with little advantage, the Leven-
berg-Marquardt algorithm turned out to be the best.

In the Table 9 presents the error of current recovery SPND NFMC-8 (FA-77) by the algorithm L-
BFGS, and in Table 10 according to Levenberg-Marquardt algorithm for the ZAES-5 27th fuel campaign.
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Table 7
The deviation of the calculated value of the current of the SPND from the actual according to item No. 1 of Table 6
Diviation, %

Neset | Datastape FA1 | FA2 | FA3 | FA4 | FA5 | FA6 | FAT
1 0.2 -0.39 0.1 -0.41 -0.04 0.06 0.77
2 0.75 0.34 -0.53 -0.41 0.04 -0.16 -0.3
3 Training -0.4 0.04 0.35 0.34 -0.26 0.17 -0.07
4 0.04 0.2 -0.06 0.12 -0.03 -0.04 -0.29
5 -0.68 -0.26 0.03 0.28 0.2 -0.1 -0.24
6 -2.19 -0.47 1.28 1.35 -0.07 0.29 0.21
7 -1.3 -0.29 -0.15 0.24 0.71 -0.11 -0.06
8 —2.66 -0.68 0.87 1.58 0.46 -0.07 -0.54
9 -3.09 -0.55 -0.27 1.65 1.14 -0.13 -1.67
10 -2.53 -1.25 -2.82 0.12 2.51 -0.49 -2.05
11 -3.78 -1.8 -1.23 1.48 2.12 -0.52 -2
12 -4.14 -1.95 -1.26 1.65 2.13 -0.56 -2.2
13 Test -4.18 -1.89 -1.48 1.76 2.26 -0.66 -2.47
14 -4 -1.43 -2.09 1.34 2.45 -0.9 -3.14
15 -4.88 -1.32 -0.32 2.4 1.76 -0.58 —2.66
16 -5 -1.91 -1.7 1.98 2.88 -0.6 -2.82
17 -5.23 -1.75 -1.25 2.46 2.73 -0.67 -3.06
18 -5.29 -2.08 -2.1 2.2 3.18 -0.82 -3.35
19 -5.47 -1.81 -1.55 2.63 2.96 -0.73 -3.36
20 -5.42 —2.66 -3.19 2.16 3.8 -1.34 -4.16

Table 8
The deviation of the calculated value of the current of the SPND from the actual according to item No. 2 of Table 6
Diviation, %

Ne set Datas set FA1 | FA2 | FA3 | FA4 | FA5 | FA6 | FA7
1 -0.01 -0.02 -0.02 -0.02 -0.03 -0.02 -0.01
2 0.02 -0.04 -0.04 -0.02 0 -0.02 -0.03
3 Training -0.05 -0.02 -0.02 -0.03 -0.04 -0.02 0
4 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.02
5 -0.04 0 0 -0.02 -0.03 -0.03 -0.05
6 -0.24 0.22 0.12 -0.1 -0.12 0.07 0.09
7 0.21 0.3 -0.1 -0.23 0.02 0.25 -0.32
8 -0.14 0.2 0.17 0.06 -0.06 -0.06 -0.12
9 0.36 0.05 0.1 0.28 0.25 0.02 -0.55
10 1.19 -0.29 -0.25 0.4 0.66 0.09 -1.24
11 0.6 -0.26 0.17 0.78 0.5 -0.28 -0.8
12 0.6 -0.34 0.14 0.84 0.48 -0.36 -0.9
13 Test 0.64 -0.35 0.12 0.86 0.49 -0.38 -0.92
14 0.82 -0.33 -0.09 0.65 0.47 -0.44 -1.4
15 0.4 -0.06 0.14 0.5 0.19 -0.43 -1.04
16 1.14 -0.18 0.22 0.88 0.64 -0.14 -1.34
17 1.06 -0.07 0.36 1.03 0.59 -0.31 -1.27
18 1.27 -0.28 0.25 1.19 0.69 -0.35 -1.45
19 1.18 -0.13 0.35 1.14 0.63 -0.3 -1.36
20 1.54 -0.58 0.31 1.65 0.88 -0.76 -1.66
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Table 9
The deviation of the calculated value of the current of the SPND from the actual according to item No. 3 of Table 6
Diviation, %
Ne set Datas set FAL | FA2 | FA3 | FA4 | FA5 | FA6 | FA7
1 0 -0.08 -0.09 -0.03 0.06 0.14 0.15
2 0.29 0.12 -0.03 -0.09 0 0.02 -0.24
3 Training -0.12 -0.13 0 0.02 -0.15 -0.23 0.22
4 -0.01 0.14 0.09 -0.01 -0.04 0 -0.04
5 -0.15 -0.05 0.04 0.11 0.13 0.08 -0.09
6 -0.32 -0.21 -0.01 0.16 0.22 0.15 -0.12
7 -0.41 -0.33 -0.07 0.25 0.37 0.27 -0.24
8 3.99 3.64 211 0.95 0.73 2.58 2.09
9 -0.65 -0.69 -0.18 0.33 0.52 0.32 -0.4
10 -0.89 -0.84 -0.22 0.34 0.63 0.41 -0.41
11 Test -1.29 -1.21 -0.49 0.31 0.88 0.62 -0.71
12 -1.35 -1.22 -0.54 0.32 0.96 0.74 -0.76
13 -1.48 -1.3 -0.61 0.31 1 0.81 -0.78
14 -1.6 -1.34 -0.67 0.29 1.09 0.9 -0.86
15 -1.61 -1.35 -0.71 0.29 1.14 0.96 -0.91
16 -1.63 -1.37 -0.78 0.24 1.17 1.05 -1.03
Table 10
The deviation of the calculated value of the current of the SPND from the actual according to item No. 4 of table 6
No Diviation, %
set Datas set FAL | FA2 | FA3 | FA4 | FA5 | FA6 | FA7
1 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
2 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
3 Training -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
4 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
5 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
6 -0.01 -0.05 -0.13 -0.13 -0.01 0.02 -0.39
7 0.01 -0.02 -0.18 -0.19 -0.02 0.07 -0.68
8 -13.34 11.86 34.09 26.83 -9.38 -4.09 101.27
9 -0.07 -0.12 -0.2 -0.26 -0.08 0 -0.89
10 -0.13 -0.13 -0.29 -0.41 -0.07 0.06 -1.17
11 Test -0.37 -0.15 -0.5 -0.73 -0.15 0.15 -1.63
12 -0.44 -0.14 -0.54 -0.75 -0.12 0.24 -1.61
13 -0.49 -0.15 -0.65 -0.87 -0.14 0.28 -1.81
14 -0.61 -0.15 -0.68 -0.92 -0.14 0.31 -1.8
15 -0.66 -0.14 -0.69 -0.93 -0.15 0.33 -1.77
16 -0.73 -0.16 -0.74 -0.99 -0.2 0.36 -1.79

Therefore. a neural network using the L-BFGS algorithm showed a better ability to generalize,

that is, to return the correct result based on data that did not participate in the training sample.

For a good recovery of SPND currents it is necessary to train a neural network on a wide range of
data. Also, do not seek to minimize the error in training the network. as the network can be converted
and lose its ability to generalize.

Conclusions

The results of the calculations showed the suitability of the use of neural networks for the diagno-
sis of in-core neutron control. Recovery of SPND signals has been shown to be possible with a devia-
tion of no more than 2 % provided that the neural network is trained over a wide range of data. This
makes it possible to determine the current of the SPND that has failed, and also allows the control of
the energy distribution in the fuel assembly even with the failed SPND.
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The best results from the SPND signal recovery were obtained using the Levenberg-Marquardt train-
ing algorithm. The L-BFGS algorithm showed better speed than the Levenberg-Marquardt algorithm.

A neural network with no hidden layers has been identified as having the best architect. The im-
portance of choosing for the neural network such input signals that most determine the nature of the
output signal is shown.

Thus, when fed to the input of the neural network of SPND signals in the sectors of symmetry
30° to the output signal error was 3...4 times smaller than the case when the input signals were given
to all SPND core. For a more accurate restoration of the currents of the SPND, it is necessary to train
the neural network over a wide range of data.
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