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IMPLEMENTATION OF THE LINEAR ELASTIC
STRUCTURE HALF-SPACE
IN THE PLAXIS IN THE STUDY OF SETTLEMENTS

L1 Conooeii, I''A. 3amunok. Peanizauisi Teopii siniiiHo-1edopmoBanoro cepenopuma B IIK Plaxis npu gocaigkeHHi ocizann
ocHoB. UYncenbHe BHUpILICHHA 3aJad Ha OCHOBI METOAY CKIHUYCHHHX EJICMEHTIB mepeibavae MOJIENIOBaHHA O0’€KTIB K CKiHYEHHOI
obmexenoi obmacti. Ilpy MonenmroBaHHI CHCTEMH <«IIiI3€MHA CIOPYAa-TPyHTOBHMIl MAacHB» 3aBKIM BHHHMKA€ ITUTaHHS OOMCKCHHS
HECKIHYEHHOTO HAIIBIPOCTOPY IPYHTOBOrO MacuBy. OCOOIHBO TOCTPHM € IHUTAaHHSA BUOOPY HIDKHBOI MEXI PO3PaXyHKOBOI MOJENi IpH
JIOCIIDKEHHI OCilaHb, OCKIJIBKU BEIMYMHH IHOro BUAy Aedopmauiii OyayTh CTPIMKO 3pOCTaTH HPOMOPLIIHO 10 30LIBIIEHHS PO3MipiB
MOJIeJi MO BepTUKali. PsJ BYEHHX BKa3ylOTh Ha MOXIIMBICTh BUPIIINTH L€ NMUTAaHHS, OOMEXHMBLIM PO3PaxXyHKOBY CXeMy TJIHOMHOIO
CTHCIMBOI TOBII], SIKA PO3PAaXOBYETHCSA METOJOM IOIIAPOBOrO MiACyMOBYBaHHA. OIHAK YacTo, 4epe3 OCOOIMBOCTI HOCIIKYBaHUX 00'€KTIB,
CKOPHUCTATHCS I[I€I0 PEKOMEHJALI€I0 HEMOXIIHBO. TOMY aKTyalbHUM € MUTAHHS PO3POOKH METOIMK MOJETIOBAHHS CHCTEMH «IIiJ3eMHA
CHOpYIa-IPyHTOBHI MacHB» B MPOrPAMHHUX KOMIUIEKCAX TAKMM YHHOM, 100 3HAYEHHs OCilaHb Oy/M TOTOKHMMH HE3aJIeKHO Bix 00paHOi
HWKHBOI MEXi PO3paxyHKOBOI MOJElNi, a TaKoX BiINOBiJanu O 3HAYECHHSM, PO3PAXOBAaHMMH 3a JOMOMOIOK KIIACHYHHX AHATITHYHHX
MeTofiB. B cTarTi onmcano MeroauKy peanisariii Teopii JiHiHHO-Ie(OPMOBAHOTO CepeIOBHUIIA, B MporpaMHOMy Komruiekci Plaxis 2D, sxwit
BHUKOPHCTOBYE METOJ] CKIHUCHHUX EJIEMEHTIB B SIKOCTI CBOEI TEOPETHYHOI 0a3u, JUIs TOCHIIKEHHS OCiIaHb OCHOB, HE3aJIEXKHO Bif 00paHOi
HWKHBOT Mexi Mozeni. Ha wiit Teopii 6a3yeTbcs METO MOMIApOBOTO MiJICYMOBYBaHHS, KU HA0YB IIMPOKOTO TOIIMPEHHS P PO3PAXYHKY
ocimanHs ocHOB. HemiHiliHa 3aleXHICTP MDK 3HA4CHHSIM OCITaHb | DIMOMHOIO B IIbOMY METOJI HOCSTAEThCS 332 PaxXyHOK BBEICHHS
koedimienta o. Buseneni dopmymu 3miHm Momyns Aedopmariii 3 TIMOMHOI Ta OTPHMaHi JIONOMiXHI KOE(]IIlieHTH, NpeaCTaBIeHi y
TaOmuuHii GopMi, SKi MOXKYTh OyTH BHKOPHCTAHI IPH MOJCIIOBAHHI CHCTEM «IIiI3€MHA CIOPYHA-IPYHTOBHH MAacHB» B IPOTPaMHOMY
komruiekci Plaxis, 3amaBum y BiKHI JOJATKOBHX TMapamerpiB MOIyJb jaedopmarii, mo JiHIHHO 301LTBIIyETHCs 3 TIHOMHOMO. [IpakTrdHe
JIOCIIJDKEHHST OIMCAaHOI METOAMKY I0Ka3aJ1o 30DKHICTh 3HAUCHb OCINAHb IPH PI3HUX NIMOMHAX HYDKHBOI MEXI MOJEN, IO CBiIYHUTH IPO
MOJKJIMBICTB ii BUKOPUCTAHHSI TIPH JOCIIPKEHHI CHCTEM «ITi[3eMHa CIIOpYa-IPyHTOBHII MacB» B IIporpaMHoMy Komiuiekci Plaxis.

Knouosi crosa: mifgzeMHa cropyzaa, IpyHTOBAa OCHOBA, OCiJIaHHS, IPYHTOBa MOJIEINb, MEXa PO3PAaXyHKOBOI 00J1acTi, Teopis JiHiiHO-
I1ehOPMOBAHOTO CEPEeIOBHIIIA, METOJ| CKIHUCHHHX EJIEMEHTIB

I. Solodei, Gh. Zatyliuk. Implementation of the linear elastic structure half-space in the Plaxis in the study of settlements.
Numerical problem solving based on the finite element method provides for objects modeling as finite bounded region. In modelling the
“underground structure — soil mass” system always arises the question of limiting the infinite half-space of the soil mass. The problem is
particularly acute for choosing the lower bound of the computing model through studies of settlement. It related to the fact that values of this
strain regimes will increase in proportion to increase of the model dimensions vertically. Some scientists solve this problem in the following
way. Limit the calculation scheme to the depth of the compression layer, which is calculated by the method of summation of the layers.
However, it is often not possible to use this recommendation because of the features of the objects being studied. Therefore, the issue of
developing methods for modeling the system “underground structure-ground massif” in software complexes. The value of the settlement
must be identical and independent of the model dimensions. They should also correspond to the analytical calculation. The present review is
concerned with linear elastic half-space implementing procedure in the Plaxis 2D, that uses the finite element method as its theoretical basis,
to study settlements, regardless of the chosen lower bound of the model. This theory is based on the method of summation of layers, which
was widespread in the calculation of settlement. The alpha-coefficient provides a non-linear relationship between settlement and depth. The
derived formulas and auxiliary coefficients presented in tabular form. Using these formulas and coefficients, you can find the Ejcrement-value
may be used, which is the increase of the Young's modulus per unit of depth and set it in the advanced features window. As well as given
their practical use capability assessment in the “underground structure — soil mass” systems research in the Plaxis 2D. Settlement at different
depths is in good agreement with each other.

Keywords: underground structure, soil mass, settlement, soil model, mesh dimension, linear elastic structure half-space, finite element method

Introduction. Correct modeling of the underground structure-soil array system using software
systems that use FEM as its theoretical basis is a rather broad issue, which includes a number of prob-
lems covered in [1] (for example: determining the magnitude and nature of the distribution of perma-
nent loads from the soil massif, the choice of soil model, etc.).

One of the most common issues in modeling the system “underground structure-soil array” is the
choice of boundaries of the calculated area. Particularly acute is the question of choosing the lower
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bound of the model if the object of the study is the subsidence. It is known that the deformations of
precipitation will increase along with the increase in the depth of the model (vertical dimensions).

Analysis of recent publications and problem statement. Perelmutter A.V, Slinker V. I. offer
the choice of the sizes of the calculation model to solve by limiting its size in such a way that the in-
fluence of boundary conditions on the distribution of effort was minimal [2]. Such an approach was
implemented in the works of Berezhnoi D.V, Sagdutullina M.K., Sultanova L.U. and Petrova D.N.,
Demenkov P.A., Potemkin D.O. [3, 4].

Since this technique consists in removing the limits of the calculation model from the under-
ground structure, it is unacceptable in the study of sedimentation. An increase in the depth of the lower
boundary of the model, on the one hand, reduces the effect on the distribution of forces, and on the
other hand leads to an unjustified increase in the deformation of the subsidence.

In this case, Perelmutter A.V, Slivker V.l., Gorodetsky O.S., Yevzerov I.D. [2, 5] indicate the
possibility to use another method — to limit the calculation scheme to the depth of the compression
zone, which is calculated by the method of layer summing whose boundary is at a depth where the
condition is fulfilled:

0z £0.204, (1)
where o,4 — stress on the weight of the soil itself;

o4 — pressure from the building, taking into account the coefficient of damping in depth.

This approach is often used in design practice and is described by Ryabkov S.V and Solo-
vyov R.A [6] when designing tunnel constructions. It should be noted that such an approach is possi-
ble with a static calculation. Methods of determining the limits of a dynamic calculation occupy a spe-
cial place. They need to be modeled in such a way as to prevent the reflection of waves, that is, to en-
sure their passage or extinction [7, 8].

However, often, due to the features of the objects being studied, it is impossible to use the rec-
ommendation to limit the calculation scheme to the depth of the compressed zone. Therefore, the de-
velopment of algorithms for modeling the system of “underground structure-soil massif” in software
complexes is urgent in such a way that the values of settlements under the static calculation are identi-
cal, regardless of the selected lower boundary of the calculation model, and also correspond to the val-
ue of sediments calculated according to classical analytical methods.

The purpose and tasks of the research. The purpose of the work is to develop a methodology
for modeling the system “underground structure-soil massif”, which would be deprived of a disad-
vantage of rapid proportional growth of sediments with increasing depth of the lower boundary of the
model, using the possibility of introducing additional parameters for the Coulomb-Mora soil model in
the Plaxis PC.

Presenting of the main material. In practice, the design for the determination of the value of
precipitation was widely used by the layer-summing method, according to which the deposition is de-
termined by the formula (2):

s=p3 ol @
i=1 Ei

where B — dimensionless coefficient equal to 0.8;

o, — the average value of the vertical normal stress from the external load in the i-th layer of soil
on the vertical passing through the center of the sole of the foundation;

h; — the thickness of the i-th layer of soil, take no more than 0.4 width of the foundation;

n — the number of layers on which the base is divided:;

E; — deformation module of the i-th layer of soil along the line of initial load.

The vertical stress from the external load (p) decreases nonlinearly with increasing depth (z) and
is determined by the formula (3):

Cp =0p, (3)
where a — coefficient taking according to the table;
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p — average pressure under the sole of the foundation.

This method is based on the theory of a linear deformed medium, according to which the normal
stresses under the rectangular platform, which makes the pressure, vary with the depth according to the
formula (4):

2 2
o= 2p arctg N + cnd+n’ +26) , 4)
T WL+G 0" ) (0 +G)A+ WL+ +n’
where n — the ratio of the sides of the platform, and £ — depth relative to the width of platform:
I
=— S
n=y (®)
22
:—' 6
5= (6)

where | and b — length and width of the site respectively;

Z — the depth at which the stress is determined.

From the formula (3, 4) we conclude that the coefficient o varies with the depth z according
to the law:

2 2
_— arctg n . En@+n"+20°) ’
T WL+ +1" ) (0 +E)A+ WL+ +0’
Due to the coefficient a in formula (3), the vertical stress decreases nonlinearly with depth, which
in turn, on the basis of formula (2), leads to a nonlinear decrease in the amount of sediment in each
subsequent (i-th) layer of soil and the nonlinear relationship between the total values sediments of the

base and depth.
On the other hand, formula (2) can be represented as:

s=p3 2, ®

where E;; —a deformation module that is nonlinearly increasing with depth and is determined by
the formula:

(1)

E.i _E : 9)
(04

As already mentioned above, the deformation of the subsidence when calculating the “under-
ground structure-base” systems in the software complexes that use FEM as its theoretical basis, in-
creases linearly with the increase in the size of the calculation model vertically. However, when using
a PC Plaxis is possible to specify additional options when using soil model of Colon-Mohr.

It is known that the hardness of soils in the natural state depends to a large extent on the level of
stress, which means that it grows with the depth of their occurrence. In the general case, the use of the
Colon-Mohr model does not imply a change in the stiffness of the soil and it is a constant value.

Additional parameters of the Coulomb-Mora model in the Plaxis PC include the ability to specify
a deformation module that linearly increases with depth — Ejncrement [KPa/m]. It is also necessary to
specify a z.+ depth mark (in Plaxis — y, ), above which the Young module has a normative value — E;
(in Plaxis — E¢ ), and below the deformation module is a sum of normative value and gain with depth,
that is, it becomes:

Ez,i = E; + Eincrement (Z — Zref ) . (10)

We can assume that there is a certain function E, = f(z), in which the value of the settles will co-
incide, regardless of the selected depth of the lower bound of the model.

MAIINHOBYAYBAHHS



ISSN 2076-2429 (print) . . N 25
ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 1(57), 2019

Having a single normative value of the deformation module, let us express the increase of the ri-
gidity module through the product of the normative value E; and some coefficient k:
Eincremem(z — Zref ) = E.k . (11)
To determine this coefficient we use the formulas of the theory of linearly deformed media for
the method of layer-summing, taking into account the formulas (9, 10, 11), we obtain:

E=Ei + Eik . (12)

Whereof:
k=—=—. (13)

Since the coefficient o varies nonlinearly depending on the relative depth, then k also changes
nonlinearly with depth. In turn, this means that the module Ejcrement and E,; will also be nonlinear vary
depending on the depth. Assuming that the rigidity module begins to grow immediately (i.e. z., = 0)
we obtain:

k
Ez,increment = Ei ; ) (14)
E, =FE+ Ez,incrementZ . (15)

However, as noted above, you can not specify the Ejcrement deformation module described by the
function in the Plaxis software package. To solve this problem, it is suggested to enter the average co-
efficient ka4 for different values of relative depth:

kavg = ﬂ ) (16)
Olavg
where:
d
Olavyg = J.OL C ) (17)
o

or substituting (7):

jZ[amtg[ n ]+ EnL+n’ +20°) ac
T LI+ +1" ) (" +) A+ NI+ +7°
. .

The coefficient k,4 by analogy with the coefficient o can be represented in tabular form (Table),
completing the table /1.1 in the IBH B.2.1-10-2009. To use this coefficient, taking into account that a
problem is solved in the software complex, and that the coefficient 1 is taken as a tape foundation, when
n>10, only one parameter must be found: the relative depth to the width of the site by formula (6).

The Plaxis 2D PC also allows you to count axially symmetric problems, so the Table. 1 also shows
the coefficient k., for the round foundations, which is searched by a similar method. In accordance with
the theory of linearly deformed media, the coefficien a. in this case varies according to the law:

(18)

avg —

2

1
1+i2

g

and in formula (6) b is the diameter of the round foundation.

a=1- (19)
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Coefficient Kayg

Coefficient K,y for

Coefficient o for foundations foundations

¢ Rectangular with sides ratio Tape Tape
Round n=U/b, which is equal to ( >§)0) ( >§)0) Round
1 14 | 18 | 24 | 32 5 i i
0.0 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 0 0

0.4 0.949 0.960 | 0.972 | 0.975 | 0976 | 0.977 [ 0.977 0.977 0.006 0.014
0.8 0.756 0.800 | 0.848 | 0.866 | 0.876 | 0.879 [ 0.881 0.881 0.037 0.083
1.2 0.547 0.606 | 0.682 | 0.717 | 0.739 | 0.749 | 0.754 0.755 0.092 0.203
1.6 0.390 0.449 | 0532 | 0.578 | 0.612 | 0.629 [ 0.639 0.642 0.162 0.352
2.0 0.285 0.336 | 0414 | 0.463 | 0.505 | 0.530 [ 0.545 0.550 0.238 0.519
2.4 0.214 0.257 | 0.325 | 0.374 | 0.419 [ 0.449 [ 0.470 0.477 0.319 0.696
2.8 0.165 0.201 | 0.260 | 0.304 | 0.349 | 0.383 | 0.410 0.420 0.401 0.879
3.2 0.130 0.160 | 0.210 | 0.251 | 0.294 | 0.329 [ 0.360 0.374 0.483 1.066
3.6 0.106 0.131 | 0.173 | 0.209 | 0.250 | 0.285 | 0.319 0.337 0.566 1.256
4.0 0.087 0.108 | 0.145 | 0.176 | 0.214 | 0.248 | 0.285 0.306 0.648 1.447
4.4 0.073 0.091 | 0.123 | 0.150 | 0.185 | 0.218 | 0.255 0.280 0.729 1.641
4.8 0.062 0.077 | 0.105 | 0.130 | 0.161 | 0.192 | 0.230 0.258 0.810 1.835
5.2 0.053 0.067 | 0.091 | 0.113 | 0.141 | 0.170 | 0.208 0.239 0.890 2.031
5.6 0.046 0.058 | 0.079 | 0.099 | 0.124 | 0.152 | 0.189 0.223 0.969 2.227
6.0 0.040 0.051 | 0.070 | 0.087 | 0.110 | 0.136 | 0.173 0.208 1.048 2.423
6.4 0.036 0.045 | 0.062 | 0.077 | 0.099 | 0.122 | 0.158 0.196 1.126 2.620
6.8 0.031 0.040 | 0.055 | 0.064 | 0.088 | 0.110 | 0.145 0.185 1.203 2.817
7.2 0.028 0.036 | 0.049 | 0.062 | 0.080 | 0.100 [ 0.133 0.175 1.280 3.015
7.6 0.024 0.032 | 0.044 | 0.056 | 0.072 | 0.091 [ 0.123 0.166 1.356 3.213
8.0 0.022 0.029 | 0.040 | 0.051 | 0.066 | 0.084 [ 0.113 0.158 1.431 3.411
8.4 0.021 0.026 | 0.037 | 0.046 | 0.060 | 0.077 [ 0.105 0.150 1.506 3.609
8.8 0.019 0.024 | 0.033 | 0.042 | 0.055 | 0.071 [ 0.098 0.143 1.580 3.808
9.2 0.017 0.022 | 0.031 | 0.039 | 0.051 | 0.065 [ 0.091 0.137 1.653 4.006
9.6 0.016 0.020 | 0.028 | 0.036 | 0.047 | 0.060 [ 0.085 0.132 1.727 4.205
10.0 0.015 0.019 | 0.026 | 0.033 | 0.043 | 0.056 [ 0.079 0.126 1.799 4.404
104 | 0.014 0.017 | 0.024 | 0.031 | 0.040 | 0.052 | 0.074 0.122 1.871 4.602
10.8 0,013 0.016 | 0.022 | 0.029 | 0.037 | 0.049 [ 0.069 0.117 1.943 4.801
11.2 0.012 0.015 | 0.021 | 0.027 | 0.035 | 0.045 [ 0.065 0.113 2.014 5.000
11.6 0.011 0.014 | 0.020 | 0.025 | 0.033 | 0.042 | 0.061 0.109 2.085 5.200
12.0 0.010 0.013 | 0.018 | 0.023 | 0.031 | 0.040 [ 0.058 0.106 2.155 5.399

The results of research. Now in the additional parameters window for the Colon-Mohr model in
Plaxis, you can specify a rigidity module that linearly increases with depth, having previously found it
by the formula (20):

Kav
Eincrement = Ei Zg ) (20)

where E; — soil deformation module;

Z — depth of the bottom of the model;

Kag — the coefficient, which depends on the relative depth of the lower bound of the model, is
calculated by (16) or selected from the Table.

Possibilities of practical use of the described method were investigated by comparing the values
of precipitation in solving problems with its use and in the usual setting, at different sizes of the model
vertically. Also obtained sediments were compared with the solution obtained using the method of
layer summing.
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Experiments were carried out by increasing the vertical dimensions of the calculation model, with
steps equal to the height of the compression zone. Dimensions of the model were taken horizontally
according to the recommendations [2], that is, the distance from the object to the lateral faces of the
model was taken equal to the height of the compression zone.

In addition, the accepted boundary conditions do not affect the stress-strain state.

The pressure on the base was transmitted through a rigid stove. The pressure and width of the
plate varied. The type of boundary conditions in the nodes of the soil foundation model on its faces
was taken on the basis of the recommendations given in [1]. The upper boundary of the model re-
mained free for displacements, imposed on the boundary on the horizontal displacements of the lateral
faces and horizontal and vertical for the lower limit. The calculation was made taking into account the
vertical plane of symmetry by introducing into the model the corresponding ligaments. Fundamentals
were simulated with the following physical and mechanical characteristics:

1) E=40 MPa, y=20 kN/m?, ¢=29°, ¢=25 kN/m?;

2) E=14.8 MPa, y=18.74 kN/m?, ¢=23.4°, ¢=12.6 KN/m?;

3) E=35.3 MPa, y=17.46 KN/m°, $=34.9°, ¢=35.3 KN/m*.

Analyzing the obtained results of the solution of a number of test problems (Fig. 1), it can be ar-
gued that the values of precipitation at different depths with the involvement of the above methodolo-
gy are well consistent, whereas in the usual formulation, as expected, precipitation rapidly increases in
proportion to the increase in vertical dimensions

0.7

0.6

0.5 —_

\
\

<
%)
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e
o

e
—_

=]

1 1.5 2 2.5 3 35 4
Depth of bottom border in the depths of the styling zone (z/z)

Fig. 1. The dependence of sediments on the vertical dimensions of the model (Dependence is typical for different
output data. The sedimentation for soils with physico-mechanical characteristics of the first coin, the pressure
p=100 kPa, the width of the site b=1 m) is presented: dashed line — with the usual solution; solid line - with the
involvement of the described method; point — a subset, calculated by the method of layer summing

Conclusions The article describes a method for implementing the theory of linearly deformed
media in the Plaxis PC. The formulas for modifying the deformation module with depth are derived
and the auxiliary coefficients are presented, which are presented in tabular form. Problems solved by
the algorithm described in the article are effectively deprived of a flaw in the rapid proportional
growth of sediments to increase the depth of the lower boundary of the model. On the other hand, be-
cause of the overvalued deformation module, the obtained values of deposition are somewhat lowered
compared to the values calculated by the layered summing method. Although the model of the basis
and formulas of the method of layer-summing based on the theory of linear deformed media cannot
reliably predict the value of sediment, the long-term practical application of this method can be con-
sidered as proof of the adequacy of calculated deformations. Therefore, the technique requires further
refinement and verification in more difficult situations.
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