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FREE VIBRATION ANALYSIS OF BEAMS
ON A PASTERNAK FOUNDATION USING LEGENDRE
POLYNOMIALS AND RAYLEIGHT-RITZ METHOD

A. Paxbap-Panoici, A. Illaxbasmabap. AHani3 BiibHHX Bibpaniii 6a1o0k Ha ocHoBi [IacTepHaka 3 BUKOPHCTAHHSM NOJHUHOMOB
Jlexxanapa i merona Penesi-Pitma. [locnmimkyerscs BinbHa BiOpawis Oanok Einepa-BepHymni i THMOIIEHKO, IO CHHPAOThCS Ha
JBOMIApAMETPHYHY HPYkHIO OCHOBY IlacrepHaka. [l BHBEACHHS KEPYHOHOTrO pIBHSHHS BHKOPHCTOBYEThCS Meron Pemes-Pirma, a
MHOrowieHu JlexxaHapa, IIOMHOXKEHI Ha TpaHWYHY (YHKIFO, BUKOPHCTOBYETBCS B SIKOCTI JOMyCTMMUX (GYHKUIH /Ui BU3HAYCHHS IOJIB
3cyBy. TOUHICTH pe3yJbTaTiB OLIHIOETBCA B MOPIBHAHHI 3 JaHMMHM, JOCTYIHMMHU B JjiTeparypi. IlokazaHo, mo Merojx Mae Xopomry
KOHBEPIeHIII0 HE3aJIeXKHO BiJ] Teopii 0a0K, FpaHUYHUX YMOB 1 TapaMeTpiB MpYXHOI ocHOBH. HaBeneHi mpupoHi yacToTu BiOpauii 6anok 3
Pi3HHMHU IPaHUYHIMH YMOBaMH, TAPAMETPH IIPY)XXHOI OCHOBH 1 BIZTHOCHHHU BHCOTH O JOBXKUHH.

Kniouosi cnoea:BinbHa Bibpanis, meron Penes-Pitna, teopis Ganox Eiinepa-beprymmi, Teopis Oamox TuMOIIEHKO, NpyXHs
ocHoBa [lactepHaxa

A. Rahbar-Ranji, A. Shahbaztabar. Free vibration analysis of beams on a Pasternak foundation using Legendre polynomials and
Rayleigh-Ritz method. A free vibration of Euler-Bernoulli and Timoshenko beams resting on a two-parameter elastic foundation of
Pasternak type has been investigated. Rayleigh-Ritz method is employed to deduce the governing equation and the Legendre polynomials
multiplied by a boundary function is used as admissible functions to define the displacement fields. Accuracy of the results is evaluated by
comparing with those available in the literature. It is shown that the method has a good and rapid convergence regardless of the beam theory,
boundary conditions and elastic foundation parameters. Natural frequencies of beams with different boundary conditions, elastic foundation
parameters, and ratios of height-to-length are presented.

Keywords: Free vibration; Rayleigh-Ritz method; Euler-Bernoulli’s beam theory; Timoshenko beam theory; Pasternak
elastic foundation

Introduction. Beams and plates resting on elastic foundations have many applications in all
branches of engineering. Building foundations, railroad ties, and engine foundations are some exam-
ples of beam/plate resting on elastic foundations. The simplest model of elastic foundation was intro-
duced by Winkler [1]. In this model a vertical displacement of the foundation is assumed to be propor-
tional to the contact pressure and the proportionality constant is called the modulus of foundation. In
the Winkler type of elastic foundation there is no mutual interaction between adjacent springs. Differ-
ent models have been introduced to consider this interaction. Pasternak [2] is a two-parameter elastic
foundation that interaction is accomplished by connecting the ends of the springs to a shear layer.

Depending upon the ratio of height-to-length of beams, different theories are used to express the
kinematic of deformation. For beams with a low ratio of height-to-length, Euler-Bernoulli Beam Theo-
ry (EBBT), in which shear deformation is ignored and planes normal to the longitudinal fibers remain
plane and normal after deformation, should be used. For beams with a high ratio of height-to-length,
Timoshenko Beam Theory (TBT), in which plane cross sections remain plane but not perpendicular to
longitudinal, is used [3, 4].

Many investigations have been carried out to study free vibrations of both EBBs and TBs on an
elastic foundation. Eisenberger and Clastornik [5] solved the eigenvalue problems of vibration and
stability of an EBB resting on a variable elastic foundation. De Rosa [6] investigated the stability and
dynamics of beams on a Winkler type elastic foundation by the cell discretization method. Zhou [7]
presented a general solution to vibration of EBBs on the variable Winkler type of elastic foundations.
Naidu and Rao [8] have studied the vibration of an uniform EBB initially stressed on Winkler and Pas-
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ternak types of foundation. Franciosi and Masi [9] have used the Finite Element Method (FEM) to
study EBBs on elastic foundations of the variable Winkler type. Yokoyama and Suita [10] have ob-
tained the natural frequencies and transient responses of TBs resting on a two-parameter elastic foun-
dation using FEM. Yokoyama [11] has obtained the parametric instability of a TB resting on a Win-
Kler type elastic foundation using FEM. Abbas and Thomas [12] have developed a FEM for stability
analysis of TBs resting on an elastic foundation subjected to periodic axial loads.Thambiratnam and
Zhuge [13] have used a simple FEM for free vibration analysis of EBBs on an elastic foundation. Bal-
kaya et al. [14] have used the differential transform method to analyse the free vibration of EBBs/TBs
resting on a elastic soil. Wang et al. [15] have presented an exact solution for TBs on various elastic
foundations using Green’s function.

In the present paper, a free vibration of EBBs/TBs resting on a Pasternak type elastic foundation
has been investigated. Rayleigh-Ritz method is employed to derive the governing equation and the
Legendre polynomials multiplied by a
boundary function are used as admissible z /yl
functions to study the free vibration. Con- 4 i unitwedth
vergence and applicability of the method
are demonstrated through some numeri-
cal examples.

Theory and formulation.Let’s as-
sume a straight uniform beam of length L,
depth H with a rectangular cross-section of
unit width which has rested on an elastic
foundation of Pasternak type (Fig. 1).

Displacement fields in x and z directions are defined as follows:

Fig. 1. A typical beam resting on an elastic foundation
of Pasternak type

- EBBT:
Uy (X, z,t) :—zM
x 1)
U, (X, z,t) = w(x, t) ’ (2
- TBT:
U(x,2,1) =-2y(x, 1) 3)
(%, 2,1) = w(x, 1) (4)

where y(x, t) is the rotation function of the cross-section and w(x, t) is transverse displacement func-
tion of the neutral axis. Stresses and strains are determined as follows:

- EBBT:
_, o*w(x, t)
" x| (5)
2
x = —Ez—a W()Z(, t)
dx ’ (6)
Vxz = 0, (7)
T =0 , (8)
- TBT:
= Y (9)
dx
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= g Y (10)
dx
= 2Dy, (11)
X
Txz = KG'YXZ ) (12)

where g is the normal strain, oy is the normal stress, yy, is the shear strain, t, is the shear stress, E

and G are the Young’s modulus and shear modulus, respectively, and K is shear correction factor to
account for non-uniform shear stress distribution.
The strain energy of a beam resting on Pasternak foundation is calculated as follows:

1k Ko 2 o ko B ow(x, 1))
U =5 { { (cxgx+rxzyxz)o|Ao|x+7 ! (w(x, t))*dx = ! [T dx, (13)

where k., and k, are Winkler and shear layer elastic coefficient of foundation, respectively. Substitut-

ing Egs. (5)—(12) into (13) and integrating with respect to z, yields to following expression for calcula-
tion of the strain energy:

- EBBT:
L 2 L L 2
u® =£.[EI ow(xt) dx + X (W(x,t))2 dx+k—pj ow(x.t) dx (14)
20 OX 2 5 2 0 OX
- TBT:
L_ 2 2
29 OX OX

(15)

which | is the second moment of inertia and Ais the cross-section area. The kinetic energy of the
beam is calculated as follows:

- EBBT:
1t (ow(x,t)Y
T == [pA| /=2 | dz , 16
: j p [ P ] (16)
- TBT:
1% (ow(x t)j2 (a\u(x t))2
T =2| [pA 2| +pl ’ dx,, 17
ZMP ( ot Pl a (17
where p is the mass density of the beam. Following displacement functions are assumed:
y(X,t) =¥ (x)cosmt, (18)
w(x,t) =W (x)cosmt, (19)

where W(x) and W (x) are mode shape functions and trigonometric term shows that the response of

the free vibration is harmonic with natural frequency, ® . Substituting Egs. (18-19) into (14-17) yield
to following expressions for maximum strain and Kinetic energies:
- EBBT:
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1k aZW(x) (6W(x)j
Upax =— [ EI X, 1)) dx + dx, 20
2! ( v j(W( )’ j = (20)
L
T’ = | PAW () . (21)
0
- TBT:
L 2 2
Unnax' =1j El (MJ + KAG (M—B‘P(x, t)) dx +
29 OX OX 22)
W (X, 1)
+— X, t dx+ dx,
j W, 0) de 22 | [ ~ j
L
Tonax' =% [10? (‘P(x)) + Aw? (W (x))%dx . (23)
0
For convenience, the following non-dimensional parameters are introduced:
X
==, 24
=1 (24)
— W
W=—, 25
i (25)
vy, (26)
The maximum total energy functional of the beam is defined as follows:
H = Umax _Tmax y (27)

Substituting EQgs. (24-26) into (20-23), total energy functional of the beam is obtained as fol-
lows:

- EBBT:
=—I(6WJd -2 I(\N(x)) dx+—j(W(x)) dx+—f(aW(X)jdx, (28)
- TBT:
r 1Y (0% (W g ) |
nl _ZM 5 +K( 5 ‘I’(x)]]dx
) (29)
1oafl (00 | | o oW (x)
-5 IH@—X"] +W ) dx+—j<W(x»d + j( aXXJ %
where: _
—  KGAL®
=% (30)
s pAw’L®
A= (31)
1(HY
3] (@)
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T, kwL2
Ky =——, 33
T (33)

T, kwL2
Kp = , 34
p EIT[Z ( )

where A is hon-dimensional natural frequency, K, and Rp are non-dimensional Winkler and shear-
ing layer elastic coefficient of foundation, respectively. Following relation is held:

2
K=K (Lj . (35)
@+v)\H
Mode shape functions are assumed as follows:
- EBBT:
— N
W()E = > Aai(2x-1), (36)
1=1
- TBT:
— N
Y =2 Bioi(2-D), (37)
i=1
— N
W) =Y Cai2x-1), (38)
j=1

where A, Bi and C; are the unknown constant coefficients, gm(2y —1) (m=1,2,3,...) is the one-
dimensional Legendre polynomial, N is the number of Legendre polynomial terms, and
fo=%"(x-1" (s=k,u,v; r,q=0,1,2) are the boundary functions which at least should satisfy the

essential boundary conditions. Table 1 shows the selected parameters for simply supported (SS) and
clamped (CC) boundary conditions. The Legendre polynomial series is a set of orthogonal series in the
interval 0...1 which yields rapid convergence and more accuracy. Fig. 2 shows the first six terms of
this polynomial.

10 Table 1
: s=1 Boundary function elements for different
s<4 <=5 2 boundary conditions
051} ~N /
7 Boundary fi fu f,
0 in: 3 condition r q r q r q
8 1.0 SS 1 1 0 0 1 1
CC 2 2 1 1 1 1
-0.5}
5=6

The governing equation for free vibration
analysis of EBB/TB is obtained by substituting
Egs. (36)—(38) into (28)—(29) and minimizing
the total energy functional with respect to un-
known coefficients as follows:

-1.0

Fig. 2. The first six terms of the Legendre polynomials

8_1‘[:06_1‘1:08_1‘[:0 i, j=12,3,...,N. (39)
dA dB; dC;
The generalized form of eigenvalue problem would be as follows:
(k1= [mD{A}=0, (40)

where k and m are the stiffness and inertia matrices, respectively, A is the vector of unknown coeffi-
. A
cientsand A* = 2'/E_I'
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Numerical and discussions. To demonstrate the convergence and applicability of the present
method, free vibrations of EBB/TB are analyzed for different foundation parameters and boundary
conditions. Table 2 gives convergence studies of current method for EBB with CC boundary condition

and Kw, Kp. The number of Legendre polynomial terms has been increased from 2 to 18. It can be
seen that, for the first modes of vibration with two numbers of the Legendre polynomial terms, a very
good result is achieved. For a higher mode of vibration, the number of the Legendre polynomial terms
should be increased. For example, for fifth mode, N equal to 10 yields an accurate result.

Table 2
Convergence study of an EBB resting jon afasternak foundation
(CC boundary condition, Kw, K, =2.5)
Frequencyparameters
e M A2 A3 Aa As
2 5.32010 8.4285 - - -
4 5.32009 8.3825 11.6778 15.1898 -
6 5.32003 8.3815 11.4368 14.5382 19.0306
8 5.32003 8.3815 11.4281 14.4985 17.7129
10 5.32003 8.3815 11.4280 14.4977 17.5908
12 5.32003 8.3815 11.4280 14.4977 17.5862
14 5.32003 8.3815 11.4280 14.4977 17.5861

Table 3 shows convergence studies of the current method for TB with SS boundary conditions

and v=0.3, K=5/6, H/L=0.2, K =10, Rp =1.In this case, an accurate result is achieved for the first
mode of vibration, with N equal to four, and for the fifth mode of vibration — with N equal to 10. It can
be concluded that the current method has a good and rapid convergence irrespective of boundary con-
ditions, beam theory and foundation parameters. For higher modes of vibration, more terms of the Le-
gendre polynomial are needed.

Table 3
Convergence study of TB resting on Pasternak foundation
(SS boundary condition, v=0.3, K=5/6, H/L=0.2, Kw, K;)
Frequency parameters
- M A2 Aa Aa hs
2 3.80593 - - - -
4 3.71567 6.54319 9.1318 11.8962 -
6 3.71543 6.13311 8.2684 10.9306 13.0323
8 3.71543 6.12573 8.2306 10.1212 11.8064
10 3.71543 6.12570 8.2301 10.0342 11.6098
12 3.71543 6.12570 8.2301 10.0313 11.5987
14 3.71543 6.12570 8.2301 10.0313 11.5985
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Table 4 shows the first five natural frequencies of EBBs with SS boundary condition for different
foundation parameters. The obtained results have been checked against Zhou [7] for the case of Win-
kler type of elastic foundation. Very good agreements can be seen regardless of foundation parameters
and frequency number.

Table 4
Non-dimensional frequency parameters for EBB with SS boundary condition”
Foundation parameters Frequency parameters

Kuw Ko M A ha A As
0 3.1496 6.28426 9.4251 12.5665 15.7080
0.5 3.4827 6.4718 9.5533 12.6635 15.7860
. 1 3.7408 6.6445 9.6766 12.7584 15.8628
25 4.3002 7.0947 10.0206 13.0310 16.0868
0 3.2193 6.2932 9.4277 12.5676 15.7086
(3.220) (6.293) (9.427) (12.568) (15.709)
10 0.5 3.5347 6.4801 9.5560 12.6646 15.7865
1 3.7830 6.6522 9.6791 12.7595 15.8634
25 4.3282 7.1010 10.0229 13.0320 16.0873
3.7484 6.3816 9.4545 12.5790 15.7144
0 (3.748) (6.382) (9.454) (12.579) (15.715)
100 0.5 3.9608 6.5613 9.5816 12.6757 15.7923
1 4.1437 6.7273 9.7038 12.7703 15.8690
25 4.5824 7.1630 10.0451 13.0421 16.0927
5.7556 7.1121 9.7102 12.6905 15.7721
0 (5.755) (7.112) (9.710) (12.690) (15.773)
1000 0.5 5.8184 7.2438 9.8277 12.7847 15.8491
1 5.8793 7.3686 9.9412 12.8770 15.9250
25 6.0513 7.7095 10.2601 13.1424 16.1464
0 10.0243 10.3687 11.5652 13.6716 16.3167
0.5 10.0363 10.4122 11.6354 13.7472 16.3863
10000 1 10.0483 10.4550 11.7043 13.8216 16.4551
25 10.0842 10.5806 11.9042 14.0378 16.6563

Table 5 shows the first five natural frequencies of EBBs with CC boundary condition for differ-
ent foundation parameters. The obtained results are examined against Franciosi and Masi [9], and very
good agreements can be seen regardless of foundation parameters and frequency number.

* The numbers in the parentheses are taken from Zhou (1993)
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Table 5
Non-dimensional frequency parameters for an EBB with CC boundary conditions”
Foundation parameters Frequency parameters
K Ky M A2 A3 Aa As
0 47324 7.8537 10.9958 14,1372 17.2788
(4.73) (7.85) (11.0) - -
0.5 4.8691 7.9683 11.0864 14.2116 17.3416
1 (4.87) (7.97) (11.09) - -
1 4.9946 8.0780 11.1748 14.2847 17.4037
(4.99) (8.08) (11.17) - -
2.5 5.3200 8.3815 11.4280 14.4977 17.5861
(5.32) (8.38) (11.43) - -
0 4.7535 7.8584 10.9975 14.1380 17.2792
10 0.5 4.8885 7.9728 11.0880 14.2124 17.3420
1 5.0125 8.0822 11.1765 14.2855 17.4041
2.5 5.3350 8.3853 11.4295 14.4984 17.5865
0 4.9504 7.9043 11.0143 14.1460 17.2836
(4.95) (7.90) (11.01) - -
0.5 5.0707 8.0168 11.1045 14.2202 17.3463
100 (5.23) (8.16) (11.24) - -
1 5.1823 8.1245 11.1925 14.2932 17.4084
(5.54) (8.39) (11.43) - -
2.5 5.4773 8.4232 11.4446 14.5058 17.5907
(5.48) (8.42) (11.44) - -
0 6.2239 8.3251 11.1790 14.2248 17.3270
1000 0.5 6.2857 8.4218 11.2653 14.2978 17.3893
1 6.3455 8.5150 11.3497 14.3696 17.4509
2.5 6.5136 8.7768 11.5918 14.5790 17.6319
0 10.1228 10.8392 12.5260 14,9493 17.7442
(10.12) (10.84) (12.53) - -
0.5 10.1374 10.8835 12.5876 15.0122 17.8022
10000 (10.16) (10.94) (12.68) - -
1 10.1518 10.9272 12.6483 15.0744 17.8597
(10.21) (11.04) (12.81) - -
2.5 10.1943 11.0546 12.8252 15.2564 18.0287
(10.41) (11.38) (13.21) - -

Tables 6-9 depict the first five frequencies of TBs resting on a Pasternak elastic foundation with
SS/CC boundary conditions. In these tables the number of Legendre polynomial terms is taken as 14
and different ratios of height-to-length are considered. It can be concluded that for height-to-length
ratios less than 0.05, this ratio has no influence on the results. However, the height-to-length ratio has
an influence on the result when it is high. Its influence depends on boundary conditions, the mode

number and foundation parameters. For example, when Kw =1, for SS boundary conditions, the first
natural frequency decreases by 1.5 percent when the height-to-length ratio increases from 0.002 to 0.2.

However, for CC boundary conditions and Rp =0, it decreases about 8% and, for Rp =2.5, it de-
creases by 10 %. Figure 3 shows the effect of the height-to-length ratio on the natural frequencies for

the case Kw =100, R,, =0.5 and SS boundary condition. It can be seen that the effect of the height-

* The numbers in the parentheses are taken from Franciosi and Masi (1993)
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to-length ratio is more prominent for a higher mode of vibration, and when the ratio of height-to-
length is less than 0.05, EBBT yields very accurate results.

Table 6
Non-dimensional frequency parameters for a TB with SS boundary conditions,
(Kw=1, v=0.3, K=5/6, and N=14)
) Foundation
Helght—t(_)— parameters Frequency parameters
lengthratio Ko o o . Y s
0 3.1496 6.2841 9.42438 12.5658 15.7067
0.002 0.5 3.4826 6.4718 9.5530 12.6628 15.7847
1 3.7408 6.6444 9.6763 12.7577 15.8615
2.5 4.3001 7.0946 10.0204 13.0303 16.0855
0 3.1430 6.2324 9.2557 12.1815 14.9927
0.05 0.5 3.4772 6.4231 9.3887 12.2850 15.0790
1 3.7360 6.5982 9.5164 12.3861 15.1637
2.5 4.2960 7.0535 9.8713 12.6752 15.4098
0 3.1238 6.0917 8.8409 11.3433 13.6132
0.10 0.5 3.4614 6.2914 8.9882 11.4660 13.7232
1 3.7218 6.4737 9.1286 11.5850 13.8306
2.5 4.2841 6.9442 9.5149 11.9213 14.1384
0 3.0540 5.6722 7.8400 9.6573 11.2222
0.20 0.5 3.4048 5.9072 8.0403 9.8487 11.4145
1 3.6720 6.1165 8.2264 10.0292 11.5972
2.5 4.2427 6.6408 8.7186 10.5174 12.0967
Table 7
Non-dimensional frequency parameters for a TB with SS boundary conditions,
(Kw=10, v=0.3, K =5/6, and N=14)
) Foundation
Helght-t(_)- parameters Frequency parameters
lengthratio Ko 7»1 o » 'y e
0 3.2193 6.29315 9.4275 1.5670 15.7073
0.002 0.5 3.5347 6.4801 9.5556 12.6640 15.7852
1 3.7830 6.6521 9.6788 12.7588 15.8620
2.5 4.3282 7.1010 10.0226 13.0313 16.0861
0 3.2130 6.2416 9.2585 12.1827 14.9933
0.05 0.5 3.5294 6.4315 9.3914 12.2862 15.0796
1 3.7783 6.6059 9.5189 12.3872 15.1643
2.5 4.3241 7.0599 9.8736 12.6763 15.4104
0 3.1946 6.1014 8.8440 11.3447 13.6141
0.10 0.5 3.5140 6.3002 8.9911 11.4674 13.7240
1 3.7644 6.4818 9.1314 11.5863 13.8314
2.5 4.3122 6.9507 9.5174 11.9225 14.1391
0 3.1281 5.6843 7.8443 9.6596 11.2236
0.20 0.5 3.4590 5.9174 8.0442 9.8509 11.4159
1 3.7154 6.1257 8.2301 10.0313 11.5985
2.5 4.2710 6.6480 8.7217 10.5192 12.0978
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Table 8
Non-dimensional frequency parameters for a TB with CC boundary conditions,
(Kw=1, v=0.3, K=5/6, and N=14)
] Foundation
Helght-tq- parameters Frequency parameters
length ratio Ko " o . Y e
0 4.7323 7.8535 10.9952 14.1360 17.2767
0.002 0.5 4.8691 7.9681 11.0858 14.2103 17.3395
1 4.9945 8.0777 11.1742 14.2835 17.4016
2.5 5.3191 8.3813 11.4274 14.4965 17.5841
0 4.6923 7.7041 10.6403 13.4612 16.1591
0.05 0.5 4.8305 7.8222 10.7363 13.5426 16.2307
1 4.9570 7.9350 10.8296 13.6226 16.3014
2.5 5.2840 8.2457 11.0957 13.8541 16.4463
0 45821 7.3318 9.8564 12.1455 14.2325
0.10 0.5 4.7250 7.611 9.9687 12.2484 14.3303
1 4.8548 7.5835 10.0773 12.3487 14.4260
2.5 5.1875 7.9172 10.3830 12.6358 14.7024
0 4.2452 6.4188 8.2857 9.9040 11.3489
0.20 0.5 4.4087 6.5930 8.4594 10.0819 11.5325
1 4.5542 6.7539 8.6230 10.2505 11.7070
2.5 49172 7.1756 9.0633 10.7095 12.1843
Table 9
Non-dimensional frequency parameters for a TB with CC boundary conditions,
(Kw=10, v=0.3, K =5/6, and N=14)
. Foundation
Helght-tc_n- parameters Frequency parameters
lengthratio Ko 7»1 o » Y s
0 4.7534 7.8581 10.9969 14.1368 17.2771
0.002 0.5 4.8885 7.9725 11.0875 14.2111 17.3399
1 5.0125 8.0820 11.1759 14.2843 17.4020
2.5 5.3349 8.3851 11.4289 14.4972 17.5845
0 4.7139 7.7089 10.6422 13.4621 16.1596
0.05 0.5 4.8503 7.8269 10.7381 13.5435 16.2312
1 4.9753 7.9394 10.8314 13.6234 16.3020
2.5 5.2991 8.2496 11.0973 13.8550 16.5084
0 4.6051 7.3374 9.8586 12.1466 14.2332
0.10 0.5 4.7460 7.4664 9.9709 12.2496 14.3310
1 4.8742 7.5886 10.07942 12.3499 14.4267
2.5 5.2035 7.9216 10.3850 12.6368 14.7030
0 4.2738 6.4269 8.2894 9.9061 11.3503
0.20 0.5 4.4343 6.6005 8.4629 10.0839 11.5337
1 45775 6.7608 8.6262 10.2524 11.7083
2.5 4.9357 7.1814 9.0661 10.7112 12.1854
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Fig. 4 shows the effect of elastic foundation parameters on the natural frequency of an EBB with
CC boundary conditions. As can be seen, Winkler elastic foundation parameter has no effect on the
natural frequency when it is less than 100, however it has a significant effect for higher values. The

effect of shearing parameter of foundation is the same for all values of K.

z 18 2 £ 5
§ 16T—T— ~ 2 65 5 63 '
B 14 271N g o
5 A3 £ =5
= 512 1 7\ = D . =5
= B 10 \/ g £ g g
§ E ‘4 287 'z
S = s 2353 cE
z % T = ! 0 =
5 & 6 / E 45 E
= 4l 5 = 9
T, g 4 . | 5 |
s - > 1 10 100 1000 7 I 10 100 1000
z 0 " 2 3 3 5 Winkler elastic foundation Winkler elastic foundation
Moder Number parameter, kw parameter, kw
Fig. 3. The effect of height-to-length Fig. 4. The effect of elastic Fig. 5. The effect of elastic
ratio on natural frequencies (SS foundation parameter on foundation parameter on
boundary conditions, K. =100, the natural frequency of an EBB the natural frequency of a TB (CC
(CC boundary conditions): boundary conditions, H/L=0.2):

K, =0.5): EBB (1); H/L=0.02 (2); _ ) . i _ 4 . .
0,05 (3): 0.1 (4): 0.2 (5) kp=0(1); 0.5 (2); 1.0 3); 25 (4)  kp=0(1); 0.5 (2); 1.0 (3); 2.5 (4)
Conclusions. In the present paper, the free vibration of EBs/TBs resting on a Pasternak founda-

tion is investigated. Rayleigh-Ritz method is used to obtain the governing equation and the Legendre
polynomials multiplied by a boundary function is used as admissible functions. It is shown that the
method has a very good and rapid convergence regardless of boundary conditions, beam theory and
elastic foundation. Using different theories, the first five eigenvalues of beam on an elastic foundation
are tabulated for different Winkler and shearing layer coefficients of foundation and the height-to-
length ratios. It is observed that the results of the EBT/TBT for small ratios of the height-to-length are
very close. However, as this ratio increases, the results of the EBBT and TBT are deviate depending
upon boundary conditions, foundation parameter and the mode number. For a higher mode number,
the effect of the height-to-length ratio is more prominent. The effects of elastic foundation parameters
have been studied, and it is found that shearing parameter of foundation has no significant effect on
the natural frequency of EBBS/TBs.
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