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AUTOMATION OF ARCHES CALCULATION

B.®. Opobei, O.®. Jawenxo, O.M. Jlumapenxo. ABTOMaTH3allisl pO3paxyHKy apok. Buknaneno nponexypy aBromatu3anii pospa-
XYHKY HampyeHo-1e()OpMOBAHOIO CTaHy KPYroBHX apoK HpH 00Ky Jeopmallii BUTMHY i pO3TATYBaHHS-CTHCHEHHS, 30CEPEIKCHUX i
PO3IOAIICHNX 30BHIIIHIX HABAHTaXKeHb. METOI0 POOOTH € NMPaKTHYHE 3aCTOCYBAHHS MOXJIMBOCTEH METO/y IPAHHYHUX CIEMEHTIB JUIS BH-
PpiLICHHS JOCHUTH TPYAOMICTKHX 3a/1a4 PO HAMpPYKEeHO-1e()OPMOBAHHII CTAaH KPYTrOBHX apoK i apKOBHUX KOHCTPYKILiH. JIIst ZOCSTHEHHS moc-
TaBJICHOT METH BUKOHAHO CTATHYHHI PO3paxyHOK HalpyKeHO-1e(hOpMOBAHOIO CTaHy KPyroBux apok B cepexosuiti MATLAB. Jlis nporo
CKJIQJIA€THCS 1 BUPIIIYETHCS CUCTEMA AU(EpeHIiaTbHUX PIBHSIHB ITIOCKOTrO Ie(OpMyBaHHS KPYTOBOTO CTEPIKHS 3 ypaxyBaHHsIM JehopMariii
BUTHHY 1 PO3TATYBaHHS LIOJI0 PAAiaIbHOTO 1 TAHTEHIIAIbHOTO MepeMillleHb. B pe3ynbTati po3paxyHKy NpUIIUIN O BUCHOBKY, L0 YHCJICHHI
3aBJIaHHS PO3PaxyHKY KiJelb i KUTbLEBUX CHCTEM MOXYTh OYTH BHpIILIEHI 3a JOMOMOrOI0 PiBHSIHHS METOAY TPAaHUYHHX EIEMEHTIB 3TiIHO
IpeCTaBIeHOI METOJUKH 3 ypaxyBaHHM Je(opMaliiii BUTHHY 1 PO3TSTYBaHHS-CTHCHEHHSL.

Kniouosi cnosa: XpyroBi apku, METOJI TPaHUYHUX €JIEMEHTIB, HAaNpyXeHo-negopMoBanuii ctaH, Matlab, aBTomMaTH3alist po3paxyHKy

V.F. Orobey, O.F. Daschenko, O.M. Lymarenko. Automation of arches calculation. The procedure of automation of calculation of
the strained-deformed state of circular arches is considered in the calculation of bending and tensile-compression deformations concentrated
and distributed external loads. The aim of the work is to apply the possibilities of the boundary element method (BEM) to solve quite labor-
intensive tasks of the strained-deformed state of circular arches and arch structures. To achieve the goal, a static calculation of the tensely-
deformed state of circular arches in the MATLAB environment is performed. For this purpose, a system of differential equations of flat
deformation of a circular rod is made and solved taking into account bending and stretching deformations along radial and tangential dis-
placements. As a result of the calculation, it was concluded that numerous problems in the calculation of rings and ring systems can be
solved by means of the boundary element method (BEM) equation in a coherently presented method, taking into account bending and ten-
sile-compression deformations.

Keywords: circular arch, boundary element method (BEM), stress-strain state, MATLAB, automated calculation

Introduction. Curved rods (arches) are widely used in rocket engineering, aircraft and shipbuild-
ing, bridges, mechanical engineering and construction. This is due to the advantages of curved rods in
front of rectilinear rods due to their higher bearing capacity and rigidity.

However, the calculation of the stress-strain state of the arches is quite complicated, because it is
necessary to take into account simultaneously deformation of bending, stretching-compression and
shear. Especially it concerns the definition of movements in arches, because the Vereshchagin formula
is not applicable here, since the freight and unit diagrams are nonlinear.

In this case we have to use the Morale integral, the Castigliano theorem, and numerical methods.
To simplify the calculation of arches, we propose to use the numerical-analytical variant of the method
of boundary elements [1] and the MATLAB programming environment.

In the literature, solutions are given for various problems of plane deformation of a circular rod
with only bending deformation [2]. In 1938, Professor N.K. Snitko obtained a solution to the problem
of plane deformation of a circular rod with allowance for bending and tension-compression defor-
mations only for a particular load case: g,(c)=g=const, where q is the intensity of the vertical load.

The lack of a sufficiently accurate analytical solution of the problem of plane deformation of a
circular rod has contributed to the fact that in a number of works [3 — 5] it is recommended to replace
curvilinear rods by a set of rectilinear rods.

This model gives an error of not more than 1.0 % if a rectilinear rod draws an arc of a curved rod
less than 5° [6]. This means that the ring can be represented by a regular polygon of 72 rods, an arch in
180° — 36 rods, etc. Further, the calculation of the curvilinear rod can be performed by the method of
boundary elements (BEM), the force method, and other methods.
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If you apply the boundary element method and
the MATLAB environment, you can significantly
reduce the complexity of the calculation, simplify
the algorithm and calculation schemes, increase the
accuracy and reliability of the results, and introduce
this methodology into the calculation practice and
educational process of higher education institutions
without much difficulty.

In connection with this, the goal of the paper is
the practical application of the possibilities of the
method of boundary elements for solving rather labo-
rious problems on the stress-strain state of circular
arches and arch structures. Fig. 1. Calculation scheme of the arch

Materials and methods. To achieve this goal,
we will calculate the stress-strain state of circular arches in the MATLAB environment.

We show in Fig. 1 the calculation scheme of the arch and write down the basic equations needed
for the calculation.

The system of differential equations for plane deformation of a circular rod with allowance for
deformation of bending and extension with respect to radial 3(o) and tangential displacement u(a)

has the form:

EAR? EAR? R*
(o) +u"(a) - u'(a) =— ,
= 9(0) +u"(0) - — —u'(a) = —-q, (a)

9"V(a) +
1)

EAR? EAR? R*
l 14 SW _ 8! __ ,
(+ al ju(a)+ (0) -5 9(@) =~ =0, ()

where EA - Rigidity of section of arch at tension-compression, kN;
El - Rigidity of section of the arch at bending, kNm?;
R — Radius of the axis of the arch, m;
o — Angular coordinate, Rad.;
g, (o) — Radial loading of the arch (along the normal to the axis), kN/m;

q, (o) — Tangential loading of the arch, KN/m.

The solution of the Cauchy exercise on plane arch deformation can be represented in the matrix
form as follows [1]:

1 2 3 4 5 6

Elv(o) 11 Au [ A [-As | -Au| Asis | Ag Elv(0) By

Elo(o) 2 Az | Az | -Aus Agg Elp(0) By
M) | _ 3 Az | Arp —Ass M(©O) |, |-Ba 2)
Q) 4 An —Ass Q(0) -By

EAu(a)] 5| Ast | Asy | —Asz | —Ass | Ann | Ase EAu(0)| |-Bs
N(a) 6 —Ass As N(0) —Bg

where Elg(a) — Angle of rotation of the section of the arch, KNm?;
M (o) — Bending moment in section, kNm;
Q(a) — Transverse force in section, kN;
N (o) — Normal force in section, kN.

Fundamental orthonormal functions and terms from the radial load (Fig. 1) after integration take
the form [1]:
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A, =cosa; A, =Rsina; A, =R(L-cosal; AM:(R3+E|RJSII’IOL—0L-COSOL_ El

EA L
Aie:Rs(l—%a-sina—COSaJ—%%a‘sina; A, =1 A,=Ra; Ag=R*(a-sina);

EAR®
El

. EA . EAR
A, =R(l—cosa); Agz=sina; A, :Esm o; A, =?(1—cosa); A, =
_ EAR®

(oo —sina);

Asq

(1—cosa—£oc-sin a}— Rloc-sin o
2 2

2

A = R%(Sina+a-C05a)+ (OL-}-%OL'COSOL—%S"] aj; , =—sSina;

2 — .Sj — F sj - —(o. —
Bllz(R‘l"'Eéi j{%(a Oy ). Szm(a Oy ). _i_Fysm(a 0‘F)+2 (a aF)++

+qy[H(a—aH)—Cos(a—aH)+ —%(a—aHL sin(a—a,).

-H (oo -0 ) +cos(a—ay), -Siﬂ(oc—oc,di};
B,, = MRsin(a—a,, ), + FyRZ[H (a—ag)—cos(a—ag), ]+
+qu3[(a_a’H )+ _Sin((X—CXH )+ - (O(, _(X'H )+ +Sin(a‘_a‘F)+]
By, =M cos(a—ay), +F,Rsin(a—a.), +q,R*[H(a—ay)-cos(a—ay), - (3)
-H(a—oa,)+cos(a—oy). ];

B, :%[—sin(a—aM ). 1+ F cos(a—ay), +
+q,R[sin(e—a,,), —sin(a—ay ), I;

(1+ EIRZJsin(\/ —0,), +(a—0y), -cos(o—ay),
B, =M

El 2
51 = , + Fy X
- -sin(o —
EI (OL 0LM )+
2 H _ _ _ 3
x{l-lr EQF JRZ sin(« OLH)J'Z (0—an), Eér [H (a—aF)—COS((x—ocF)]}+qyx

[1+ EARZJRZ sin(o— oy ), — (o —a), cos(a— o) —sin(o— o ), + (o —a ), cos(o—a ),
El 2
X

EAR*
El

[(a—-ay). —sin(a-o), —(a—ay), +sin(a—ay),]

M .
B, =Hcos(a —ay), +Fsin(a—oag), +

+q,R[H (. —ay), —cos(a—ay ), —H (o —o ) +cos(a—oy ), .

The next step is to the account of the boundary conditions for supporting the arches.

To determine the parameters of the stressed-deformed state of the arch, it is necessary to compile
and solve a boundary value task that takes into account the given support conditions for boundary
points. On the BEM, this equation has the form [1]
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AX,=-B, 4)
where A, — Matrix of boundary values of fundamental functions, which takes into account the bounda-
ry conditions of the arch;

X, — Matrix of initial and final parameters of arch bending and stretching;

B — Load matrix with boundary variable value a.

Consider the various conditions of arch support.

With the hinged support, the diagram of which is shown in Fig. 2, constituted the matrices of the

initial (X) and final (Y) parameters of the arch (5), where we took into account the hinged support of
two boundary sections.

1 [E19(0)=0; El(p(ocr)\l E19(c,)=0
2 Elg(0) 2| Elo(a,)
5 | Elu(0)=0; N(a.,) 5 |Elu(a,)=0
6 N(0) 6 N(a,)

From these matrices it follows that in the matrix A+, the columns 1, 3 and 5 must be zeroed and
add the elements A(2.1) = -1; A(4.3) = -1; A (6.5) = -1, taking into account the transfer of parameters
from Y to X«. The matrix equation of the boundary value task for the arch in Fig. 2 becomes:

ORNORENON:

1 A —As A Elo(r) —Bu(m)

2| -1 Ay -Asz Az Elo(0) —Bai(m)

3 -Ap Az Q(m) — Bai(m) (6)
4 -1 |-An —Ase Q(0) Bai(m)

5 As) Asy —Asg N(m) Bsi(m)

6 Ags | -1 |-Ags N(0) Be1(m)

After solving equation (6), the reactions of the arch will be: H,=Q,; Ry=Ny ;H =Q;
Rq¢ =Ny,

Similarly, making matrices X, , Y, we get the equation of the boundary value task for the other
case — hard pinching and hinged support, shown in Fig. 3.

and the stress-strain state at internal points is determined by equation (2).

Fig. 2. Hinged arch Fig. 3. Hard pinching and hinged support of arches

Q@ 3 4 (5 s

1 —A13|-Aus A Elo(r) —Bui(m)
21 -1 —Ags|—Aas A Q(m) —Bai(m)
3 A22 A12 —A36 M(O) - B31 (TC) (7)
4 -1 Au —Ase Q(0) Bai(m)
5 —As3|—As, Asg N(m) Bsi(m)
6 —Aesl -1 | Ap N(0) Be1(m)
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After solving (7), the reactions of the arch will be equal to
HOZQ(O); 0~ NO)' Q(n)’ K N(‘n:); MO:M(O)'

Fig. 4 shows a diagram of the foIIowmg type of support for arches — the hard pinching of two
boundary points.
The matrix equation of the boundary value task of this case of support will take the form (8).

Q@ 3 4 (5 s

1 —Az|-Au Asg M(m) —B1u(m)

2| -1 —Ags| A1z A Q(m) —Bi(m)

3 Axp | Ap —Asg M(0) — Bai(m) (8)
4 -1 Ap —Aug Q(0) Bai(m)

5 As; |-Ass Ase N(m) Bsi(m)

6 —Aes| -1 | Apy N(0) Bei(m)

Reactions of the arch will be equal
=Qo): Ry=Nig): Mg=M; He =Quy 5 Re =Nipyi My =M.

Let us consider an example of determining the parameters of the stress-strain state of an arch with
an arbitrary load and fixing.

Results. Define the stress-strain state of the arch (Fig. 5). The results are presented numerically
(in the form of a table) and visually (in the form of diagrams).

Ho=20 kN / \ | H=6.96kN
M=147.14kN m\-T—/ O
Ro=200.88kN R=210.08 kN
Fig. 4. Hard pinching of the arch Fig. 5. Load and fixing in the arch

Angular coordinates for the concentrated moment and the concentrated force are

Oy =z O =%n. The angular coordinates of the uniformly distributed load are a,, =0; a, =7.

4
With the given initial data, we calculate the values of the boundary parameters using Eg. (7) and
represent the obtained results in Table 1.

Table 1

The value of the boundary parameters of the arch in Fig. 5

Ne n/n Parametr | Value
1 Elo(n), KNm? —958.34
2 Q(n), kN 6.96
3 M(0), kNm 147.14
4 Q(0), kN 220.00
5 N(z), kKN 210.08
6 N(0), kN 200.88

The reactions of the arch supports will be equal to Hy=20.00 kN, Ry=200.88 kN,
Mo=147.14 KNm, H,=6.96 kN, R,=210.08 kN.
The values of the parameters of the stress-strain state are summarized in Table 2.
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The results of arch calculating in numerical form

Table 2

Angular coordinate

Parameters of the stress-strain state

3 2 7

rad grad Ei\ll\i%r(l)z ' Ei(&?noz ' M, kNm Q, kN EAk”,\ﬁﬁ ' N, kN

0.0 0.0 0.0 0.0 147.14 -20.0 0.0 -200.88
0.09 5 0.133 1.86 119.79 -19.15 -0.033 -202.59
0.17 10 0.497 3.35 93.72 -18.16 -0.092 -204.22
0.26 15 1.038 4.48 6915 -17.02 -0.200 -205.76
0.35 20 1.703 5.28 46.24 -15.76 -0.371 -207.19
0.44 25 2.445 5.78 25.19 -14.38 -0.617 -208.50
0.52 30 3.214 6.00 6.15 -12.88 -0.943 -209.69
0.61 35 3.970 5.96 -10.74 -11.29 -1.348 -210.75
0.70 40 4673 571 -25.34 -9.61 -1.831 -211.66
0.79 45 5.289 5.27 -67.55 —7.86 -2.383 -214.30
0.87 50 5.760 4.25 —77.16 -5.89 -2.993 -214.90
0.96 55 6.036 3.12 -83.98 -3.87 -3.643 -215.33
1.05 60 6.100 1.92 -87.96 -1.83 -4.310 -215.57
1.13 65 5.945 0.68 -89.07 0.24 -4.973 -215.64
1.22 70 5.570 -0.54 -87.30 2.30 -5.608 -215.53
1.31 75 4,980 -1.73 -82.67 04.34 -6.192 -214.24
1.40 80 4,189 -2.84 -75.20 6.35 -6.704 -214.78
1.48 85 3.219 -3.82 -64.9 8.31 -7.124 -214.14
1.57 90 2.095 -4.64 -52.03 10.21 -7.433 -213.33
1.66 95 0.853 -5.26 -36.50 12.03 -7.618 -212.36
1.75 100 -0.468 -5.65 -18.48 13.76 —7.668 -211.23
1.83 105 -1.824 -5.77 1.87 15.38 -7.578 -209.96
1.92 110 -3.165 -5.59 24.41 16.89 —7.345 -208.55
2.01 115 -4.435 -5.08 48.96 18.26 -6.975 -207.02
2.09 120 -5.578 -4.21 -75.35 19.50 -6.478 -205.37
2.18 125 -6.534 -2.96 103.36 20.59 -5.871 -203.62
2.27 130 —7.240 -1.32 132.79 21.53 -5.175 -201.78
2.36 135 -7.635 0.74 163.40 22.30 -4.421 -199.86
2.44 140 -7.673 2.85 139.20 -16.95 -3.645 -201.38
2.53 145 -7.383 4.63 116.14 -16.07 -2.882 -202.82
2.62 150 -6.813 6.10 94.39 -15.06 -2.165 -204.18
2.71 155 -6.008 7.28 74.13 -1394 -1.520 -205.44
2.79 160 -2.016 8.18 55.50 -12.72 -0.970 -206.61
2.88 165 -3.879 8.83 38.66 -11.40 -0.532 -207.66
2.97 170 -2.638 9.27 23.72 -9.99 -0.219 -208.59
3.05 175 -1.334 9.51 10.80 -8.50 -0.040 -209.40
3.14 180 0.0 9.58 0.0 -6.96 0.0 -210.08

The data in Table 2 indicate that the obtained results are accurate. This conclusion is justified by
the fact that the stress-strain state of the arch was calculated from the equations of the method of initial
parameters (2), where the initial parameters were taken from Table 1.

If the solution is exact, then the support boundary conditions must be satisfied on the right pedes-
tal, which is confirmed by the data in Table 2.

The diagrams of the parameters of the stress-strain state of the arch in Cartesian coordinates are

shown in Fig. 6 — 11.

Diagrams in Figures 6 — 11 possible easy to depict on the contour of the arch.
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Fig. 6. Diagram of arch El.9, deflections, kNm®
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Fig. 8. Diagram of bending moments M, kNm
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Fig. 10. Diagram of tangential
displacements EAu, KNm
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Fig. 7. Diagram of the rotation angles
of the arch Elp, kNm®
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Fig. 9. Diagram of transverse forces Q, kN

0 05 1 15 2 a, rad

N, kN

Fig. 11. Diagram of normal forces N, kN

Conclusions. Equations of boundary value tasks for determining unknown initial parameters of
circular arcs under the existing conditions of support of boundary sections are obtained. On the basis
of fundamental concepts of material resistance, dynamics and strength of structures a technique for
calculating the stress-strain state of circular arches in the MATLAB environment is developed. Taking
into account the effect of distributed and concentrated loads the calculation of a circular arch

is performed.
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It should be noted that the formation of the equations of boundary value tasks for the calculation
of arches with different support conditions significantly shortens the time of other researchers in solv-
ing problems of calculating and analyzing structures containing circular arches.

The technique of calculating of the stress-strain state presented by the authors has significant ad-
vantages over the known methods. It describes in sufficient detail the calculation of the action of the
external concentrated moment and the calculation of all the kinematic parameters of the deformed
state of the circular arch.

In conclusion, we note that numerous tasks of calculating rings and ring systems [2, vol. 1, p.
321; 365] can be solved using BEM equation (2) in similar manner, but in a more exact formulation
given bending and stretching-compression deformations.
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