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INTEGRATED APPROACH TO SOLVING THE FLUID
DYNAMICS AND HEAT TRANSFER PROBLEMS

The dynamics’ problems embrace an important branch of applied sciences. A large part of re-
searchers’ efforts is devoted to their solution that is due not only to these problems’ diversity, but also
the solutions complexity.

Analysis of recent research and publications. Changing the investigated parameters in time
and space is considered by researchers as the need to write the original mathematical model in differ-
ential form. So let we call this approach “differential” one. Further the efforts are focused onto simpli-
fying the model maintaining a certain degree of adequacy of the studied process description. That is
usually done through minimum possible simplification, allowing required solution obtaining in one
way or another. Contemporary level of mathematical apparatus and computer technology development
make possible to obtain numerical solutions for, complex models. This leads to taking into account the
thin phenomena. In some cases it is necessary and furthermore, it represents the research aim. But of-
ten their inclusion does not have any significant impact on the studied process’ basic parameters value,
at the same time being a major source of difficulties when solving and resource expenses. Moreover,
taking into account insignificant factors does disguise the fundamental phenomena manifestation and
complicates forecasting their development in a wide range of input data changes.

In many cases, there is an alternative to the above approach. Let we define it as an “integral” one.
It is based on balance conservation equations (momentum, matter, energy) registered in the general
integral form, or, in other words, in a concentrated formulation. Subsequently, there takes place an
effect of mathematical model elements complication (and not the simplification as in the “differential”
approach). The detailing reaches a minimum required level of the obtained solution accuracy. Often
these models solution are much simpler than these obtained through “differential” approach and, in
addition, at all stages of the model transformation the studied variables integral balances are the same.
Their distribution can be described by simple a priori relations with an accuracy up to the least coeffi-
cients’ quantity. The nature of dependencies can be determined from simple model experiments or
from previously obtained partial (often complex) solutions. The coefficients are determined from a
small number of the analogic experiments. This approach does involve some approximations and
therefore some errors. But to be noted is that in applied problems solving the respective values’ meas-
urements also produce some error. Therefore some inaccuracy of such calculations is acceptable, alt-
hough its scale must be evaluated. At these calculations’ issue we can obtain a simple relation amena-
ble to a broad generalization and useful when calculating the unknown values.

Aim of the Research. This research has been aimed onto considering the “integral” approach to
solving problems of dynamics, with further illustration of the “integral” approach possibilities to prob-
lem solving at examples:

— problem of determining the natural frequencies of fluctuations case of the free surface liquid
in containers of various shapes;

— problem of determining the transitory process time at various bodies heating (plate, cylinder, sphere).

Main Body. The early beginning of search for efficient solutions of problems concerning natural
frequency determination of the fluid with a free surface in different shapes’ containers dates back to
the XIX century [1], that search continued throughout the XX century. Even today this issue still never
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lost its practical significance. The oscillating fluid can influence (causing often
a negative impact onto) the condition of r/w and automobile transport tanks
(most r/w accidents does occur namely with tanks), tankers, liquid fuel storage
reservoir at oil storage and distribution terminals, nuclear fuel storage pools,
etc. In these last two cases, the fluid fluctuation can be due to the seismic ac-
tion [2]. The problem solution was often searched by variational or experi-
mental [3] methods. Those solution being in principle found, they essentially
relate to particular cases [3], or give a complex sophisticated tool for problem
solving, which still needs for some advanced skill to use, and, when used, still
gives a partial result. That doesn’t allow making, on the basis of such solu-
tions, some general conclusions for different forms of containers or varying
degrees of reservoir filling.

Let we consider the integral approach. Its use requires determining the na-
ture of the fluid in the container. To this end, we implement the visualization
of its inner layers’ movement when free surface vibrational motion. This can
be done by placing in the container’s center a rod coloring the fluid’s sur-
rounding layers (Fig. 1). The resulting picture (colored liquid) shows that it is
possible to allocate a depth at which the lower (deeper) layers of fluid are not
involved into motion; a so-called effective depth. This movement type can be
observed in different forms vessels, a list of container shapes studied being
given at Table 1. Let we admit an effective depth A.; equal to half the width of the container (Fig. 1:

enveloped with a circular arc). To describe the fluid motion we shall apply integral coefficients, using
transformations given at [1],

Fig. 1. Visualization
of the fluid’s internal
layers motion

ng -
o=,|—=\hgy k,, 1
R eff ® ( )

where her — relative effective depth of the container filling (depth at which the free surface oscilla-
tion takes its effect):

- l—e b ath<l;
o = )

1,atZ>1;

o — proper (circular) frequency of the liquid free surface fluctuations;
n — overload (under normal conditions on the ground n=1);
g=9,8 — free-fall acceleration, m/s? ;

h =h/R —relative depth of container filling;

h — depth of container filling;

R —characteristic size of the container (radius for cylindrical container, half the width for a rec-
tangular one).

This approach can be applied to containers of various shapes. The ratio &, may be determined by

assessing each of values inbounds to the expression. A simpler and more defined methods to find £,
and k, , relies upon small experimental series implementing with further results’ treatment using the

expressions (1) and (2). This is the approach used in [1], which results are shown at Table 1.

Timing of the transition process during the bodies’ heating (plate, cylinder, sphere). The above-
exposed problem describes the nature of fluid velocity changes, depending on the depth, on the basis
of simple experiments by this motion visualization. But we can select a group of problems whose solu-
tion can be built on the basis of existing data and assumptions based on those data, as to the nature of
changes in the studied value. Let we consider this approach application to the problem of bodies’ cool-
ing and heating. There exists an exact solution for their simple forms: infinite plate, infinite cylinder,
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sphere. This allows us from one hand to estimate the solution’s simplification, from another, to evalu-
ate the introduced error.

Table 1
Coefficients’ value for calculating the natural frequencies of liquid oscillation in the tanks
The law of distribution of
Ne Tank’s shape, position and influencing forces’ directions ky k, the calc;ulated r§sglts
normalized deviations
from the experimental one
Straight rectangular parallelepiped, the lateral faces are vertical,
1 . - 3,67 | 1,26 (0,011; 0,00042)
along the side edges, 4> 0,3
Circular cylinder the axis is vertical, perpendicularly to the axis,
2 |- 4,29 | 1,36 (0; 0,00064)
h>0,4
3 Circular cylinder the axis is horizontal lengthwise the axis, 35 L6 0: 0.0028
0’2 < h > 3 , s > ( s Vs )
Circular cylinder the axis is horizontal, perpendicularly to the
4| . - 243 | 1,29 (0; 0,00037)
axis 0,2<h>138
5 Tmncated cone thg axis is vertical, opening angle 20°, perpen- 5 121 (0; 0,000676)
dicularly to the axis
6 Tmncated cone th.e axis is vertical, opening angle 50°, perpen- 7.57 | 0,905 (0; 0,000525)
dicularly to the axis
Coaxial circular cylinders the axis is vertical, perpendicularly to
7 - 43 | 1,39 (0,02; 0,001)
the axis 7 >0,4

Considering the temperature changes in the center of a heated body, we can write the initial data
in the standard formulation [4]:
— all temperatures values are sought as deviations (on the surface 9., in the center of the body

9., at the environment 9,,, and the mean temperature around the body 9) respectively to the initial
body temperature. In this case

9 =t —t,;
S, =t —t,;
ey =ty — 1, =cONSst ;
9=7-1,,
where #, —the heated body surface temperature;
t, — temperature at the center of the body during heating;

t — mean-body temperature during heating;
— before heating beginning the body is in equilibrium with environment having a temperature ¢, .

At the initial instance the ambient temperature changes abruptly from ¢, to ¢,,, =const ;

— the reference center corresponds to the body center;

— the III type conditions being the most common kind are taken as the boundary conditions.

It is known that the process of bodies’ heating — cooling when considering their cross-section
temperature as the equilibrium temperature is exponential. The exact solution for the case of non-
equilibrium temperature distribution as given in [4], although not the same for different forms of the
bodies, does also bear an exponential component. In [4] the solutions obtained in the form of some
series underwent a simplification on the grounds that, even for Fo>0,3 the series are rapidly con-
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verging therefore the temperature distribution is rather accurately described by the first term of the
series. That results in:

— for plate center
2-sinp,

gc = . exp(_H%FO) ’ (3)
W, +smp, - CoS U,

where Fo — Fourier number;
u; — the first root of the solution for transcendental equation ctgu =/ Bi ;

Bi — Biot criterion;
9. =9./9., — normalized temperature at the center;
— for cylinder center

env

3 - 2-Ji(w)
’ Wy [Jé(lll) + le(ul)]
where J, and J; — Bessel function of zero and first order, respectively;
Jow) _ 1.
(W Bi’

exp(—; Fo), 4)

p; — the first root of the solution for transcendental equation

— for sphere center:

3 - 2-(sinp; —p, cosp,)
’ M, —sinp, Cospy,
where p; — the first root of the solution for transcendental equation tg(p) = (—p)/(Bi—1).

exp(—p,Fo), (%)

Assuming that the 9, change from 9, to 9, has an exponential character, let we suppose that

for different embodiments of the heating process its parameters expression form remains the same
when quantitative changes. We represent that in the form of

9,=9,+(9, —SC)exp(l—ij. (6)
X

The 9, and 3, values are unknown, therefore subject to determining. The expression (6) is written
considering the fact that at x=/ there would be 3, =3, and at x=0 the necessary condition is
9, =9, . Here / represents a characteristic size of the studied body, and xis the current coordinate

from the body center to its surface.
The average integral temperature value

~ 14
9=—19,5.dx, (7
2
and mean-distance / from the reference zero, where the sought temperature is conventionally implemented
- 1 !
[ =—|x-exp|1——|-S.dx, 8
VTQ p[ x] \ ®

where V; — the heated body volume;

S, — area of the layer parallel to the body surface at the distance x from the coordinates’ origin.
Let we consider the plate heating. Due to its symmetry we estimate the heating through only one side
surface and half of the thickness. In this case

Ve =8u-98,

where §,,, — area of the plate’s lateral surface;

8 —1/2 thickness of the plate.

Substituting (6) into (7), (8) and performing the necessary transformations, we obtain

§=9,+(9, -9.)k, 9)
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§=k-5, (10)
where £=0,4;

8 — mean-distance from the coordinates’ origin, at which conditionally realized is the temperature 9.
With regard to (9) and (10) the body heating model can be compactly written down through par-
ametric representation as

d9 A -
cpVr—=8,=(8,-9), (11)
dt )

A

=S 8, -9 =08, (B —9,), (12)

env

where 1 — current process time;

¢ — specific heat capacity of the heated body;

p — substance density;

A — substance heat conductivity;

oo — coefficient of heat transfer from the body to the environment.

The equation (11) expresses the law of energy conservation. Its right side determines the energy
transferred from the boundary (surface body) inside by a difference (pressure) in thermodynamic force
(temperature difference) capacity. The left part serves to express the energy stored due to body capaci-
ty (specific heat).

The equation (12) exposes III type boundary condition and represents the energy balance. The
right part describes the energy transferred from the environment to the body. The left one, similarly to
the previous equation, refers to the energy drawn from the surface into the body. At that a is the coef-
ficient of heat transfer from the environment to the body; A renders the thermal conductivity of the
body material; p is the density; and ¢ is the specific heat of the heated body material.

After transformation of (11) and (12) equations, taking into account expressions (9) and (10)

9, =1-exp(—Ho), (13)

where Ho — modified homochronicity index:

Ho = arSud Bi - or Ho= Fo—SlmS—Bl -; (14)
6% Vr 1+kBi Ve 1+kBi
where a = o heat conductivity coefficient;
cp
. ad . .
Bi= 7 — Biot criterion;
Fo —Fourier criterion.
Herein:
— for plate
Slatszslatazl; (15)
VT ‘S'lat6
— for infinite cylinder
SR _ 2nRLR 2, (16)
Ve TR2L
where L — cylinder length;
— for sphere
R 4mR’R
Sul _ 4“ =3, (17)
Vr —nR3
3
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We shall apply the solution (13), (14) to estimate the bodies’ heating transitory process end. After
that we compare the results with the known exact solutions of [4]. Departing from (13) the transition

process is considered complete when Ho =3 . This corresponds to the sought value deviation from its
maximum possible value (1 in this case) never exceeding 5 %, i.e. 9, =0,95. For this case, (15)
Ho
5.0 Bi (18)
Ve, 1+kBi
Now we adjust the value & rounded in (9) using exact solutions [4]. As a result, we obtain:
— for plate £ =0,42;
— for cylinder £=0,39;
— for sphere k£ =0,36.
Results. Now we proceed to comparing the results Fo, and Fo, and, thus the heating process

Fo,

end time based on relative error given in Table 2.

Table 2
Comparison of exact and approximate values of the heating process end time
Plate k£ =0,42 Cylinder k£ =0,39 Sphere £ =0,36
Bi FOl, 0 Fol, 0 Fola 0
Foo, 14| cgteur20) | 270 | For 14 | caieura0y | &7 | For 18| Gaeut o0y | 807
0,005 | 600,34 601,26 0,15 300,06 300,6 0,18 200,1 200,4 0,15
0,01 300,9 301,3 0,1 1504 150,6 0,15 100,20 100,36 0,17
0,1 31,12 31,26 0,5 15,48 15,59 0,7 10,29 10,36 0,7
1,0 4,200 4,26 1,4 2,02 2,085 3,3 1,31 1,36 3,7
10 1,58 1,56 1,3 0,725 0,735 1,3 0,45 0,46 1,4
100 1,34 1,29 3,6 0,612 0,6 1,9 0,38 0,37 3,0
1000 1,32 1,26 3,9 0,601 0,587 2,36 0,37 0,36 34

In the whole range of changes Bi for all bodies considered the time of the heating process end,
calculated using the proposed model, when compactly formulated differs from the results of the exact
model solution in a distributed setting for less than 4 %, i.e. complies with the engineering calcula-
tions precision tolerance. At that the transitory process’ end is defined by a single value Ho =3, while
the source [4] assigns in this case to each body and each Bi value a corresponding value Fo.

Thus, the bodies heating end time for considered shapes can be determined using one expression (13)
and two coefficients (Table 3), which is much simpler than when using exact solutions of (3), (4), (5) type.

Table 3
Shape coefficients
S lat8 k
Vr
Plate 1 0,42
Cylinder 2 0,39
Sphere 3 0,36

Conclusions. At this study issue we came to get a single solution in the form (1) for the problem
of determining the fluctuations natural frequencies for fluid with a free surface, or (13) for the bodies
heating problem; this efficient result has been obtained as consequence of the transition to a compact-
formulation model and use of the investigated parameters’ profiles a priori description:
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— In dealing with the problem of estimating the fluid’s proper fluctuations frequency as obtained
from the visualization of the studied process;

— In solving the problem of bodies’ heating on the basis of previously obtained solutions of sim-
ilar problems.

The resulting solutions are simple, uniform for whole range of considered problems, at that their
errors do not exceed the allowable values for engineering calculations accuracy.
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AHOTAIISA / AHHOTALIUSL / ABSTRACT

O.1. bpynemxin. InTerpajJbHuii miaxia 10 BUpileHHs 3a1a4 AMHAMIKH piaguHu i Temoo0Miny. PosrmsnyTo anste-
PHATUBHHMIA, 110 BiZHOMICHHIO 0 MOMKPEHOro “audepeHianbHoro”, “iHTerpalbHuid” MiaXi] y BUPINICHH] 3aBJaHb TUHAMI-
KH. 3aMiCTh CHPOLICHHS Au(epeHiaNnbHOl, 1 BIAMOBIIHO CKIaJHOI, MATEeMaTHYHOT MOZAETI 10 PiBHS MOKJIMBOCTI ii BUpIIICH-
HSI PO3TIIIIA€THCS ONUC TOCIIPKYBAHOTO IPOIIECY 3a JOIOMOTOI0 3aralbHUX IHTErpanbHUX (HaiiOuThIn mpocTx) OamaHco-
BHX CITiBBITHOIICHb 3aKOHIB 30€pEXKCHHS 3 MOJAIBIION iX JeTaii3aimiero (YCKIaJHEHHIM) 10 piBHS HEOOXiTHOI TOYHOCTI
OJICP)KYBaHOTO pilleHHs. MOXXIJIMBOCTI TAKOTO IiJXO0Ay IPOLITIOCTPOBAHI Ha MPUKIIAAX: PIlICHHS 3aa4 BU3HAYCHHS BIIaCHOL
YacTOTH KOJIMBAaHb PiMHM 3 BUIBHOIO NMOBEPXHEI0 B EMHOCTSX PI3HHX (OPM IIpH iX pi3HiH opieHTaUii B 1OJIi MacOBUX CHII;
pillieHHsI 3a/1a4i MPOTrpiBY Til pi3HOI popMu (HECKiHUCHHA [UIACTHHA, HECKIHYCHHHH LTIHIP, KYJIs).

Kniouosi cnoea: interpansHuil miaxin, IMHaMIiKa piIuHU, HECTALIOHAPHI 3a4a4i HArpiBy Tij, KpUTepii MoAiIGHOCTI, YuC-
112 ogo0m.

A.U. Bpynemxun. UHTerpajbHbIil MOAX0] K PelIeHUI0 3a1a4 TUHAMUKH KUIKOCTH M TemjoooMmeHna. PaccMorpen
AIBTEePHATUBHBIA, 10 OTHOIIECHUIO K pacmpocTpaHeHHOMY “‘muddepeHnnansHoMy”, “HHTETpaNbHBIN MOAXO0[ B PEIICHUU
3ama4 IUHAMHKA. BMecto ympomenus auddepeHnuanbHol, 1 COOTBETCTBEHHO CIIOKHOM, MaTeMaTHYecKOH MOAENU IO
YPOBHSI BO3MOKHOCTH €€ PELIeHHs] PAaCCMaTPHUBAETCs ONMUCAHNE HCCIIeyeMOro IpoIiecca ¢ IIOMOIIBIO OOIIMX HHTETPaIbHBIX
(namnbornee MPOCTHIX) 0ATaHCOBBIX COOTHOIICHUIT 3aKOHOB COXPAaHEHUs C IOCIEAYIOmel UX JeTanu3anueil (YCIoKHEHHEeM)
JI0 YPOBHsI HEOOXOANMOM TOYHOCTH IOJIy4aeMOro peuieHus. Bo3MOXKHOCTH Takoro moaxoJa NpOWILTIOCTPUPOBAHBI Ha TIPH-
Mepax: pelleHHs 3a/ay OIpejeleHHs COOCTBEHHOW 4acTOThI KOJIeOaHUH JKHIKOCTH CO CBOOOAHOI MOBEPXHOCTBIO B €MKO-
CTAX Pa3NUuHBIX (OPM MPH UX Pa3TMYHON OPUEHTAIMM B MOJE MACCOBBIX CHJI;, PEIIEHMS 3a7add MporpeBa Tel Pa3IndHOI
¢dopmel (OeckoHEUHAs IUIACTHHA, OECKOHCYHBIH UIHHAP, [Iap).

Kniouesvie crosa: MATErpaIbHBIN MOAXO0M, AMHAMUKA KUAKOCTH, HECTAIIHOHAPHBIC 331a4M HarpeBa Tel, KPUTEPUH I10-
J0OMsI, YyucIia mogoous.
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A.I Brunetkin. Integrated approach to solving the fluid dynamics and heat transfer problems. Considered is an al-
ternative, in relation to the widely used “differential” one, “integrated” approach to solving the dynamics problems. Instead
of simplifying the differential and thus complicated mathematical model to the level of a possible solution, we propose the
studied process description using general integral (the most simple) balance relations of conservation laws with further de-
tailed exposition (complication) to the required accuracy level of the resulting solutions. The approach possibilities are illus-
trated: with the example of solving the problem of determining the liquid fluctuation natural frequency when a free surface in
tanks of various forms placed with heating different orientations in the field of mass forces; and with the example of solving
the problem of various shapes’ bodies (infinite plate, infinite cylinder, sphere).

Keywords: integrated approach, fluid dynamics, dependent problems of heating bodies, similarity criteria, similarity factors.
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