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DEVELOPMENT OF A CRITERION FOR SELECTING THE
LEVEL OF WAVELET DECOMPOSITION FOR QRS
DETECTION IN ELECTROCARDIOGRAM SIGNALS USING
ENERGY AND ENTROPY

I. Hllepbaxosa, /[. Kowymina. Ilodynosa kputepiro BuGopy piBHsi BeliBiaer-gexommnosuuii a1 QRS-kommiexcie B EKI-
CHTHAJIaX 3 BHKOPHCTAHHSIM eHeprii Ta eHTpomii. Anami3 enexrpokapaiorpadiunux (EKI') curnamiB € ogHUM i3 KIFOYOBHUX HampsiMiB
cy4acHol 0ioMeAMYHOI iHXKeHepii, 1o 3a0e3Meuye MOXKIMBICTh PAaHHBOTO BHSIBJICHHS MOPYIIEHb CEPLEBOI AisUIBHOCTI, TAKUX SK apUTMIl,
imeMist Ta iHII cepleBo-cyauHHI martosnorii. HaiOinem indgopmaruBauMm ¢parmentom EKI-curnamy BBaxaerbest QRS-komruieke, skuit
BiloOpakae eJIEKTPUYHY aKTHBHICTb IIUTYHOUKIB CEPIL i € BaXKIMBUM MapKEpPOM JUIs MEJMYHOI JiarHOCTUKK. Y il pOOOTI 3aIIpOIIOHOBAHO
MiAxig 10 BUOOPY ONTUMAIBHOTO PIiBHS BEWBIIET-ACKOMIIO3MIIIi, 3aCHOBAHMII Ha KIIBbKICHOMY aHali3l €HepreTHYHUX Ta EHTPOMIHHHX
XapaKTePUCTHK CUTHAITY HAa KOXXKHOMY piBHi. MeToro mocnmikeHHs € moOynoBa (popMalli3oBaHOTO KPHUTEpilo iHGOPMATHUBHOCTI pPiBHIB
po3KiIagy Ta OLiHKA e(EeKTUBHOCTI PI3HHMX THIIIB MAaTEPHHCHKUX BEHBIETIB Ui 3anadi BunineHHs QRS-kommekciB y curnanax EKI. YV
MeXaX JOCIIDKEHHS MPOaHali30BaHO CUTHaNM 3 Biakpuroi 0azu manux MIT-BIH Arrhythmia Database, oOuucneHo 3HaueHHsI eHepril,
EHTPOIIT Ta IX BiJHOLICHHS JUIsl KOXHOTO PiBHS IMCKPETHOTO BelBIeT-IiepeTBoperHs. OTpHMaHi pe3yJIbTaTh CBi4aTh, IO PiBHI 3 BHCOKHM
CHEPreTUYHUM BKJIAJOM Ta HU3BKOIO CHTPOIIEI0 Halikpamie BinmoOpaxkaroTh jokamizamito QRS-kommtekciB. Ilokasano, mo BHOIp THITY
MaTEPUHCHKOTO BEHBJIETa iCTOTHO BIUIMBAE HAa PO3MOALT LUX XapakTepucTHK. HaiOinbmn eeKTHBHUM Juisl 3a/1a4i aBTomatnu3oBaHoi QRS-
nerekuii BusBHBCs BeiiBier Daubechies, 30kpema Ha piBHsiX Os—Os. HaykoBa HOBM3HAa poOOTH monsirae B iHTErpauii eHepreTHYHO-
SHTPOIIHHOrO MiAXO0My /10 MPOLECY aBTOMAaTU30BaHOTO BUOOPY PiBHSA JeKoMIo3ulii 6e3 yuacti ekcriepra. [IpakTiyHa 3HaUyIIICTh MOJIATAE y
MOJKJIMBOCT] BIIPOBA/DKEHHS IIbOFO METOLY B CHCTEMH KOMIT FOTEPHOI QIarHOCTHKH 3 METONO IIJABHINCHHS iXHBOI TOYHOCTI, HaAIMHOCTI Ta
aJIaNTHBHOCTI JI0 PI3HHX THUIIB 010MEIUYHHX CHTHAJIB.

Knouosi cnosa: enextpokapaiorpama (EKI'), QRS-gerekiis, IuckpeTHe BEHBIET-IEPETBOPEHHS, SHTPOIIsl CHIHAILY, CHePreTHYHUH
aHaJIi3, piBEHb JACKOMIIO3HLIT

H. Shcherbakova, D. Koshutina. Development of a criterion for selecting the level of wavelet decomposition for QRS detection
in electrocardiogram signals using energy and entropy. Analysis of electrocardiographic (ECG) signals is one of the key areas of modern
biomedical engineering, providing the possibility of early detection of cardiac disorders such as arrhythmias, ischemia, and other
cardiovascular pathologies. The most informative segment of the ECG signal is the QRS complex, which reflects the electrical activity of the
heart ventricles and serves as an important marker for medical diagnostics. This work proposes a approach to selecting the optimal wavelet
decomposition level based on quantitative analysis of energy and entropy characteristics of the signal at each level. The aim of the study is to
construct a formalized criterion of informativeness for decomposition levels and evaluate the effectiveness of different types of mother
wavelets for the task of extracting QRS complexes from ECG signals. Within the study, signals from the open MIT-BIH Arrhythmia
Database were analyzed, and values of energy, entropy, and their ratio were calculated for each level of discrete wavelet transform. The
results indicate that levels with high energy contribution and low entropy best reflect the localization of QRS complexes. It was shown that
the choice of mother wavelet type significantly affects the distribution of these characteristics. The Daubechies wavelet was found to be the
most effective for automated QRS detection, particularly at levels ds—ds. The scientific novelty of the work lies in the integration of the
energy-entropy approach into the automated process of decomposition level selection without expert involvement. The practical significance
is in the potential implementation of this method in computer diagnostic systems to improve their accuracy, reliability, and adaptability to
various types of biomedical signals.

Keywords: electrocardiogram, QRS detection, discrete wavelet transform, signal entropy, energy analysis, decomposition level

1. Introduction

Accurate detection of cardiac abnormalities remains a major task in clinical diagnostics. Electro-
cardiography (ECG) provides detailed information about the heart’s electrical activity and is common-
ly used to detect arrhythmias, ischemia, and other functional disorders. A crucial part of ECG signal
analysis is the identification of QRS complexes-short, high-frequency fragments corresponding to ven-
tricular depolarization. Reliable detection of these peaks is essential for heart rate analysis, spectral
evaluation, and further diagnostic steps.

Wavelet transform is often used in ECG signal processing due to its ability to represent signals
simultaneously in time and frequency domains. This is particularly useful for non-stationary signals
that contain short transients, such as QRS complexes. Yet, despite the widespread use of wavelets,
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there is still no clear consensus on how to choose the _
most suitable decomposition level or mother wavelet for |32 o5
precise QRS detection. .
In many practical implementations, the decomposi- ®)
tion level is selected arbitrarily or kept fixed, which lim-
its flexibility when applying the method to signals of dif-
ferent origins or characteristics. A systematic approach is
needed to assess the informativeness of individual levels. o 7
This work addresses the problem of selecting an op- — 2 @
timal wavelet decomposition level by combining energy L) |
and entropy-based criteria. Figure 1 shows an example of 77\ /\_
a typical ECG signal with the QRS complex marked. V
2. Literature Review and Problem Statement IR (o)
Recent studies in ECG signal processing increasing- ®
ly focus on improving the accuracy of detecting key QT Intervo
components of the cardiac cycle, particularly QRS com-
plexes. One of the most actively used tools for this pur-
pose is wavelet transform (WT), which enables multi-

5 wave wes

Fig. 1. QRS complex visualization

level representation of the signal with simultaneous localiza- 1
tion in both time and frequency domains. This makes it well
suited for identifying short impulses and capturing morpho- 0
logical features of the signal. 1
The analysis of the literature showed that researchinthis 0 1 2 3 4 5 6 7
area is conducted in three directions: a
1. Improving signal preprocessing — noise removal, fre- 1
quency filtering, and baseline correction; 0
2. Mathematical feature extraction — identifying charac-
teristic patterns through formal analytical methods; -1
3. Hybrid approaches — combining statistical, clusteringg ©0 2 4 6 8 10
and machine learning techniques. 1 b
Wavelet transform proves useful in all three areas. It can
suppress noise and enhance relevant features, serve as a tool ¢
for extracting informative patterns, and act as a component

within complex detection systems, such as classifiers based —1
on neural networks or clustering algorithms.
Another important consideration when using WT is the

0 02 04 06 08 10

choice of the mother wavelet, which should match the specif-
ic requirements of the task. Among the most widely used 0
wavelets are: -1
— Daubechies 4 (db.) — offers good time localization and 0 1 2 3 4 5 6 7
is suitable for basic QRS detection; d

— Daubechies 6 (dbs) — its shape closely resembles QRS 1
morphology, which improves sensitivity to these components;

— Haar — often used for preprocessing tasks due to its _4
computational simplicity;

-2
— Symlet and Coiflet — provide improved symmetry and 0 1 2 3 4 5
precise localization, which are crucial in tasks requiring exact e
peak positioning [1]. Fig. 2. Visualization of commonly used

Different wavelets vary in shape, symmetry, and the mother wavelets: Daubechies 4 (a);
number of vanishing moments. These properties directly af-  Daubechies 6 (b); Haar (c); Symlet (d);
fect their ability to highlight characteristic ECG features in Coiflet (e)
both time and frequency domains. As illustrated in Figure 2, a
visual comparison of wavelet shapes helps in selecting the most appropriate one for reliable QRS
complex detection.
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One of the essential stages in this approach is the extraction of features used for further signal
analysis. Informative features are quantitative or qualitative descriptors that capture the essential prop-
erties of the signal in a compact and processable form [2]. In the context of ECG, such features are
crucial for identifying specific phases of the cardiac cycle, detecting pathological changes, and serving
as input for classification algorithms. Features derived from wavelet transform play a central role in
both classification tasks and the detection of cardiac abnormalities.

To better structure these features within the framework of wavelet analysis, Table 1 provides a
generalized list along with examples of their application.

Table 1
Key Features Used in Wavelet-Based ECG Analysis and Their Applications
Feature Application
Amplitude of waves (R, P, T) | Morphological analysis, pathology assessment (hypertrophy, ischemia) [17, 18]
Peak positions Determination of RR intervals, heart rate calculation, arrhythmia detection
QRS complex duration Diagnosis of ventricular disorders, conduction blocks [19]
Energy at decomposition level Detection of dominant frequencies, distribution of signal activity

Complexity assessment, rhythm change detection, atrial fibrillation

Shannon / Rényi entropy identification [20]

Energy-to-entropy ratio Automated wavelet decomposition level selection, signal optimization
Weighted average energy Generalized description of signal’s frequency content for classification
Root mean square (RMS) value Denoising, extraction of active phases
Number of zero crossings Selection of wavelet matching local wave symmetry

As shown in Table 1, each feature serves a specific purpose: some describe the morphology of
the waves, while others characterize the frequency or statistical properties of the signal. Together,
these features form a characteristic vector that can be used as input to classification systems, such as
artificial neural networks (ANN), decision trees, or clustering methods (e.g., K-means or DBSCAN)
[3]. Combining these features enables high accuracy in detecting arrhythmias, classifying types of
heartbeats, and predicting pathological conditions.

To ensure effective performance of such models, it is necessary to select the most informative
wavelet decomposition levels. Quantitative criteria are applied to objectively evaluate the significance
of each level. Among the most common are energy-based metrics and entropy measures [4, 5, 6]. The
signal energy at level j is defined as:

2
E;=E; sz‘c{j,k}‘ : 1)
Shannon entropy is defined as:
S; :_Zk P; log(p;,) (2)
2
. |Cj,k|

=
Zk|civk|

In addition to Shannon entropy, Rényi entropy is also used in the literature as a more flexible cri-
terion for assessing signal complexity in wavelet analysis [5]. One of its advantages is the ability to
adjust sensitivity to probability distribution through the order parameter o\alphac, which allows better
differentiation between levels of signal complexity. This feature proves especially useful when work-
ing with unstable or noisy data. However, drawbacks include increased computational complexity and
the need for a justified choice of the a\alphaa parameter, which can complicate automation of the
analysis.

A combined criterion in the form of entropy to energy ratio (4) is employed to identify the most
informative decomposition level-i.e., the level at which the ratio between the signal energy and entro-
py reaches its maximum. This ratio helps determine the level where the signal energy is high (indicat-
ing the presence of components significant for analysis), while the entropy remains moderate (indicat-
ing lower randomness). Such a level typically corresponds to segments of the signal containing QRS
complexes and is therefore the most suitable for feature extraction and classification:
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C =—1, (4)

Such criteria have gained wide acceptance in wavelet analysis of biomedical signals due to their
ability to objectively identify decomposition levels containing the most relevant information — that is,
information of diagnostic value for detecting characteristic components of the ECG signal, particularly
QRS complexes. They also enable precise identification of changes in heart rhythm and wave mor-
phology. Specifically, Li et al. [4] proposed using sub-signal entropy combined with a random forest
classifier for ECG classification. Cornforth et al. [5] analyzed the application of Rényi entropy for ear-
ly detection of neuropathies — dysfunctions of the autonomic nervous system affecting heart rate regu-
lation. Rekik et al. [6] first introduced a combined criterion merging energy and entropy to determine
the most informative decomposition level.

In Rekik et al. [6], entropy features were employed to generate attributes for detecting P waves
based on a combined criterion accounting for the information content across decomposition levels. Li
et al. [4] performed detection of R, P, and T waves using thresholding of wavelet coefficients, which
improved the accuracy of identifying key ECG points. Lenis et al. [7] proposed a method for P wave
detection using stationary wavelet transform (SWT), validated against intracardiac electrograms,
achieving enhanced localization accuracy even in the presence of noise.

As a summary, Table 2 presents a comparative overview of methods, features, and data sources
applied in the literature for QRS detection.

Table 2
Comparison of Methods for Detection and Classification of QRS Complexes
Task Method Signal Features Dataset Reference
Q%S complex WT + K-means Amplltude_, _coeffluent MIT-BIH 8]
etection positions
Rhythm Energy, peak coordinates,
classification DWT + ANN QRS duration B [3]
P wave . Amplitude, low-amplitude Intracardiac
detection SWT + Coiflet waves EG + ECG [7]
R’:' T waves DWT + thresholding Peak positions MIT-BIH [5]
etection
ECG WT packet + Random .
classification Forest Sub-signal entropy B [4]
P wave Local entropy + WT Entropy profile MIT — BIH, QT [7]
detection '
WT .
optimization Vanishing moments Spectral energy - [9]

In study [10], a classification method based on Haar wavelets combined with Shannon entropy
criterion was proposed to identify informative segments of the signal. The authors implemented an
adaptive approach for optimizing classifier coefficient ranges, taking into account the effects of noise
and limited computational resources. Although the research primarily focused on image processing,
the methodology can be extended to biomedical signals, particularly ECG, where fast processing, tem-
poral feature localization, and reduction of false alarms are also critical. Applying such an approach to
QRS complex analysis opens prospects for developing highly accurate adaptive real-time systems.

The analysis shows that wavelet transform improves detection sensitivity, especially in cases of
arrhythmias and low-amplitude waves. The use of adaptive level selection based on the ratio (4) or
combined metrics is a promising direction for creating universal ECG analysis algorithms.

To objectively evaluate the performance of these algorithms, most studies employ standard met-
rics: sensitivity (Se), specificity (Sp), accuracy (Acc), average delay (Delay), and others. Sensitivity
measures the algorithm’s ability to correctly detect true QRS complexes, which is essential for medi-
cal safety.

Specificity reflects the algorithm’s capacity to correctly identify the absence of events, thereby
avoiding false-positive detections. This metric is critical for medical monitoring systems, as it reduces
the likelihood of false alarms and prevents excessive interventions by medical personnel. For example,
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in automated diagnostic systems, false alarms may lead to overload with clinically insignificant signals
[11, 4]. High specificity indicates the algorithm’s ability to distinguish true cardiac rhythm signals
from artifacts, a crucial factor for real-time monitoring systems [11, 4]. This is particularly important
in clinical settings where false positives (e.g., confusing noise with QRS complexes) may cause un-
necessary alerts, burden medical staff, or prompt excessive intervention.

Accuracy is an overall metric that reflects the proportion of correctly classified instances among
all cases. It provides a quick assessment of an algorithm’s performance, especially when positive and
negative classes are balanced. High accuracy indicates a well-balanced algorithm, which is critical for
medical applications, particularly in mobile or wearable heart rate monitoring devices [8, 3]. It sum-
marizes the algorithm’s ability to correctly identify both true positives (e.g., actual QRS complexes)
and true negatives (e.g., absence of peaks), a factor important in practical deployment.

Delay is a critical metric for real-time systems. It measures the time elapsed between the occur-
rence of an event (e.g., a QRS complex) and its detection by the system. Excessive delay in clinical
applications may lead to late alerts or loss of vital information. Low delay is essential in devices such
as cardiac monitors, automated defibrillators, or remote patient monitoring systems [5, 12]. Timely
detection of QRS complexes — at or before their appearance on the monitor — is crucial, especially for
automated alerting systems where every second can be decisive, for example, in detecting life-
threatening arrhythmias or during remote patient supervision. Excessive delay may cause loss of valu-
able information or delayed medical response.

For instance, Xia et al. [8] demonstrated a sensitivity of 99.54% and accuracy of 99.52% using
Daubechies 4 wavelets for peak clustering. Agrawal et al. [3] employed wavelet-based features as in-
puts to an artificial neural network for cardiac rhythm classification.

3. Aim and Objectives of the Study

The aim of this study is to extend and experimentally validate a criterion for selecting the wavelet
decomposition level based on a combination of energy and entropy characteristics of the ECG signal,
enabling accurate and automated detection of QRS complexes. Unlike previous research [13], which fo-
cused on a single wavelet (Daubechies 6), this paper emphasizes a comparison use of various mother
wavelets to test the generalizability of the method and its robustness to variations in signal morphology.

The objectives of the study are as follows:

— to systematize approaches for feature extraction within the context of wavelet-based ECG analysis;

— to establish the relationship between decomposition level and signal informativeness;

— to verify a quantitative criterion based on the energy-to-entropy ratio (coefficient Cj);

— to validate the approach using signals from the MIT-BIH database and several types of mother
wavelets (Daubechies 4, Daubechies 6, Haar, Symlet, Coiflet);

—to assess the consistency of the selected decomposition level with the morphological character-
istics of QRS complexes;

— to test the stability of the C; criterion across different ECG recordings and generalize the range
of optimal levels (ds—ds) [14, 15].

Thus, this paper aims to lay the groundwork for developing adaptive algorithms for detecting
cardiological markers, where decomposition parameters are not fixed but selected automatically based
on intrinsic signal characteristics. This approach allows algorithms to adapt to individual patient fea-
tures and improve diagnostic accuracy [16].

4. Algorithms and Research Methods

Within the scope of this study, a method was proposed based on calculating the energy and en-
tropy at each level of the wavelet decomposition of the ECG signal. The signal energy at a given de-
composition level reflects the total power of the wavelet coefficients at that level. This measure allows
identifying where the greatest amount of information about the dynamic changes in the signal is con-
centrated — for example, those associated with QRS complexes. High energy indicates active regions
of the signal that are potentially relevant for detecting cardiac impulses [17].

Entropy, particularly Shannon entropy, serves as a measure of the disorder or complexity in the
distribution of wavelet coefficients. It indicates how chaotic or structured the signal’s composition is.
For QRS complex detection [18], levels with structured information (i.e., low entropy) are of interest,
as these are more likely to localize stable morphological features characteristic of QRS complexes.

Combining these indicators allows assessing how simultaneously energy-significant and struc-
tured a particular level is, which is critical for automated QRS detection. The combination of these two
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metrics, expressed as a ratio shown in Equation 4, forms an informative criterion for selecting the level
where the signal contains the highest amount of ordered energy. Thus, the level at which the coeffi-
cient Ci reaches its maximum is considered optimal for QRS complex detection.

From a practical standpoint, this approach enables objective identification of the decomposition
level containing the most structured and clinically significant information about QRS complexes [19].
This is especially useful in situations where the shape and amplitude of the signal may vary signifi-
cantly depending on the patient or the type of ECG recording. Automatic determination of the in-
formative level significantly enhances detection accuracy and reliability, reducing the risk of false pos-
itives or false negatives. Such an approach allows automated parameter selection without the need for
manual tuning or fixed levels, increasing the method’s flexibility and adaptability in real-world clini-
cal recordings.

The experimental part was based on signals from the open MIT-BIH Arrhythmia Database [13],
which is regarded as a standard in ECG research. This database includes 48 records of 30 minutes
each, digitized at a sampling rate of 360 Hz [14]. The study focused on record number 109, which
contains characteristic QRS complexes with clear morphology. This particular record was chosen due
to its distinct structure and the presence of diverse impulse types, allowing the proposed method to be
tested under conditions close to clinical reality. This choice ensures the representativeness of the re-
sults and supports generalized conclusions about the method’s effectiveness [20].

After defining the research objectives and selecting the data source, the next logical step was to
develop a structured methodology to implement the proposed approach in practice. The research con-
sisted of the following stages:

Stage 1. Construction of the wavelet decomposition using the Discrete Wavelet Transform
(DWT);

Stage 2. Calculation of energy and entropy values at each decomposition level;

Stage 3. Determination of the informativeness coefficient C;;

Stage 4. ldentification of the level at which C; is maximal;

Stage 5. Comparative analysis of various mother wavelets (Daubechies 4, Daubechies 6, Haar,
Symlet, Coiflet).

For all wavelet types, decomposition was performed up to the eighth level inclusive. This choice
was motivated by theoretical considerations regarding frequency coverage, as well as results from pre-
vious studies [14], which indicated the highest informativeness in levels ds—ds. To verify this hypothe-
sis, an experiment was conducted for Daubechies 6, with results presented in Table 3.

Table 3
Results of Calculating the C; Coefficient for the Daubechies 6 Wavelet
Decomposition Level di d; ds d4 ds ds ds ds
Ci 5.3532 | 21.3872 | 27.1572 | 27.7161 | 2.3309 | 0.2752 | 0.0903 | 0.0078

As shown in the table, the maximum value of the C; coefficient occurs at decomposition level d.,
which aligns with theoretical expectations and confirms the effectiveness of the criterion for automat-
ed selection of the decomposition level.

Furthermore, deeper decompositions (beyond eight levels) lead to excessive loss of high-
frequency information [15], which is crucial for localizing QRS complexes, while shallower decompo-
sitions may fail to capture all relevant signal features. Thus, eight levels provide a compromise be-
tween frequency resolution and preservation of key cardiac rhythm characteristics.

The calculations were implemented in the Python environment using the PyWavelets library,
which offers a convenient interface for constructing multilevel discrete wavelet decompositions and
allows easy modification of the mother wavelet type. This facilitates conducting a series of experi-
ments with different wavelets without significantly complicating the code.

During the signal analysis, two key metrics-energy and entropy-were calculated for each decom-
position level j. To avoid redundancy, the study used previously defined formulas for computing ener-
gy, entropy, and the informativeness coefficient Ci, which enable identification of the level with the
highest concentration of ordered information.
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This level is considered optimal for QRS detection, as it combines both high energy significance
and low entropy complexity. The level was deemed optimal when C; reached its maximum.

Additionally, a stability analysis of the C; criterion results was conducted to assess the unambigu-
ity of the wavelet decomposition level choice across different patients. This step is particularly im-
portant for future adaptation of the method to real-time applications or variable signal characteristics.

The approach reduces the dependency of QRS detection accuracy on manual intervention or pre-
set parameters, which is especially valuable in developing automatic monitoring systems. It also al-
lows evaluating the method’s sensitivity to morphological variations and automatically selecting the
most informative decomposition level.

5. Research Results

Within the conducted study, a series of experiments were performed using five of the most com-
mon wavelets: Daubechies 4, Daubechies 6, Haar, Symlet, and Coiflet. For each wavelet type, discrete
wavelet transform was applied to signal No. 109 from the MIT-BIH database, and the informativeness
coefficient C; was calculated at each of the eight decomposition levels.

The results were visualized in Figure 3. As observed, regardless of the mother wavelet type, the
maximum values of the C; criterion are predominantly localized within the range of levels ds—ds. This
range corresponds to the frequency spectrum of 5...20 Hz, within which the energy of the QRS com-
plexes is typically concentrated. This finding confirms the stability of the C; criterion and its effective-
ness in the task of automated QRS detection.

Ci Ci
30 200
150
20
100
10 50
0 . of ! s
di d2 ds dis ds de d7 ds do di d2 d3 d4 ds ds d7 dg dy dio di1
Level of detail Level of detail
a b
Ci Ci
25 25 |
20 20 .
15 15 |
10 10 !
5 5
0 ; ———e 0
di do d3 ds ds ds d7 ds do di d» d3 ds ds ds d7 dg dg
Level of detail Level of detail
c d

Fig. 3. Dependence of the C; Criterion Value on the Decomposition Level for Different Types of Wavelets:
Daubechies 4 (a); Haar (b); Symlet (c); Coiflet (d)

Summarizing the results obtained for different types of mother wavelets, it can be noted that the
best values of the informativeness criterion C; were recorded in the following combinations: for
Daubechies 4, at level ds (Ci=36.21); for Daubechies 6, also at ds (Ci=27.71); for Symlet, at da
(Ci=32.15); and for Coiflet, at ds (Ci=29.34). Although the Haar wavelet demonstrated the highest
criterion C; value (219.85) at the first level, such localization is overly sensitive to noise and less stable
for clinical use. Thus, the most stable results were achieved at levels ds—ds for wavelets dbs, syma, and
coify, confirming their suitability for QRS detection.

A detailed comparison of the results for different wavelet types revealed certain trends. Specifi-
cally, the Daubechies 6 wavelet showed the highest C; values at level ds, while Haar peaked at level ds,
and Symlet and Coiflet had their maxima slightly shifted toward ds. Meanwhile, Daubechies 4 exhibit-
ed a more “blurred” maximum, indicating somewhat lower selectivity.
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Therefore, the C; criterion allows not only the selection of the decomposition level for a specific
signal but also provides a quantitative assessment of the wavelet’s relevance to the task of QRS com-
plex detection. This approach can be used as a component of more general adaptive ECG processing
systems that automatically adjust to the signal’s morphology and help avoid fixed parameters.

6. Conclusions

The conducted analysis confirmed the effectiveness of the criterion C; for selecting the optimal
level of wavelet decomposition when detecting QRS complexes in ECG signals. Regardless of the
type of wavelet, the maximum values of C; consistently occur within levels ds—ds, which corresponds
to the frequency spectrum of QRS complexes.

Among the wavelets studied, Daubechies 6, Coiflet 1, and Symlet 4 proved to be the most suita-
ble for QRS detection due to their stable C; maxima at levels ds—ds. Although the Haar wavelet showed
extremely high C; values at the first level, it is less suitable because of its excessive sensitivity to noise
and lack of localization. The Daubechies 4 wavelet demonstrated a broader distribution of informa-
tiveness, which may be useful for more complex signals but is less optimal for precise detection.

Thus, the experimental results demonstrate the advisability of an adaptive approach in selecting
the wavelet and decomposition level depending on the signal morphology. The proposed method can
be integrated into automated ECG diagnostic and monitoring systems to improve detection accuracy
and reduce false positives.
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