Simulation model of instantaneous electrical and power parameters of mode and quality of electricity for DC traction power systems
DOI:
https://doi.org/10.15276/opu.1.51.2017.13Keywords:
DC traction power supply system, timetable, quality indicators of electricityAbstract
The nature of the electricity consumption in TPS makes the loading of traction substations. On the basis of previous studies of qualitative characteristics of the DC traction power system, the shortcomings related to work of driven power transformers at DC substation and at the electric locomotives were identified. Thus, further increasing of electric railway equipment with adjustable converters sets the problem to investigate the influence of its work on the magnitude of harmonic of voltage and current in the catenary system. Aim: The aim of this research is to develop a simulation model of instantaneous electrical and power parameters of mode and quality of electricity for DC traction power systems under conditions of current distortion. Materials and Methods: Using the methods of the theory of electrical engineering, the model for continuous calculation of instantaneous mode parameters of the DC traction power systems is developed. Results: Based on the analysis of the structure of modern traction electric part of electric locomotives that get energy via DC catenary system, we found that the electricity regime may be described qualitatively only considering the higher harmonic settings of the operation mode. Influence of parameters of a catenary system, due to the presence of harmonic components in the current and voltage requires consideration in the calculation regime the effective resistance as well as the inductance of circuit elements. The obtained results can be used in the formation of the requirements for electricity metering at sites of railways where operated electric locomotives with traction electrical complex, which has a semiconductor converters.
Downloads
References
Слободчиков, И.В. К вопросу об электромагнитной совместимости подвижного состава с импульсным регулированием с тяговыми подстанциями постоянного тока / И.В. Сободчиков / Коммунальное хозяйство городов. – 2010. – № 95 – С. 379-383.
Каштанов, А.Л. Оценка перетоков мощности в тяговой сети постоянного тока по данным автоматизированной системы АСМУЭ ФКС / А.Л. Каштанов, О.О. Комякова // Вестник Воронежского государственного технического университета. – 2015. – Т. 11, № 3. – С. 130-133.
Мищенко, Т.Н. Показатели качества электроэнергии в тяговой сети на токоприемниках электровозов постоянного тока / Т.Н. Мищенко // Вісник Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна. – 2008. – Вип. 23. – С. 114-116.
Слободенюк, Ю.О. Модель розрахунку миттєвих параметрів режиму системи тягового електропостачання при русі електровозу / Ю.О. Слободенюк, О.В. Бялобржеський // Електротехніка та електроенергетика. – 2016. – № 1. – С. 42-48.
Марквардт, К.Г. Электроснабжение электрифицированных железных дорог / К.Г. Марквардт. – 4-е изд., перераб. и доп. – М.: Транспорт, 1982. – 528 с.
Слепцов, М.А. Основы электрического транспорта / М.А. Слепцов, Г.П. Долаберидзе, А.В. Прокопович [и др.]; под общ. ред. М.А. Слепцова. – М.: Academia, 2006. – 462 с.
IEEE Standard 1459-2010. Definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions / Institute of Electrical and Electronics Engineers. — IEEE, 2010. — 40 p.
Emanuel, A.E. Power Definitions and The Physical Mechanism of Power Flow / A.E. Emanuel. – Oxford: Wiley-Blackwell, 2010. – 280 p.
Сиротин, Ю.А. Векторная мгновенная мощность и энергетические режимы трехфазных цепей / Ю.А. Сиротин // Технічна електродинаміка. – 2013. – № 6. – С. 57-65.
Зиновьев, Г.С. Основы силовой электроники / Г.С. Зиновьев. – Новосибирск: Изд-во НГТУ, 2003. – 664 с.
Сухоніс, Т.Ю. Моделювання позаштатних режимів роботи системи інвертор – асинхронний двигун тягового електротехнічного комплексу двосистемного електровоза / Т.Ю. Сухоніс, Ю.О. Миколаєнко, О.В. Бялобржеський // Гірнича електромеханіка та автоматика. – 2013. – Вип. 91. – С. 89-94.