Nanodispersed boriding of titanium alloy

Authors

  • K.O. Kostyk National Technical University “Kharkiv Polytechnic Institute”
  • V.O. Kostyk National Technical University “Kharkiv Polytechnic Institute”

DOI:

https://doi.org/10.15276/opu.3.47.2015.04

Keywords:

boriding, titanium alloy, microstructure, diffusion layer, surface hardness

Abstract

The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm) and transition zone (30...190 µm). Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

Downloads

Download data is not yet available.

Author Biographies

K.O. Kostyk, National Technical University “Kharkiv Polytechnic Institute”

PhD, Assoc.Prof.

V.O. Kostyk, National Technical University “Kharkiv Polytechnic Institute”

PhD, Assoc.Prof

References

Lütjering, G. Titanium / G. Lütjering, J.C. Williams. — Berlin; New York: Springer, 2003. — 379 p.

Li, C. Improving the surface hardness and wear resistance of Ti3SiC2 by boronizing treatment / C. Li, M.S. Li, Y.C. Zhou // Surface & Coatings Technology. — 2007. — Vol. 201, Issue 12. — PP. 6005—6011.

Munro, R.G. Material properties of titanium diboride / R.G. Munro // Journal of Research of the National Institute of Standards and Technology. — 2000. — Vol. 105, Issue 5. — PP. 709—720.

Atar, E. Characteristics and wear performance of borided Ti6Al4V alloy / E. Atar, E.S. Kayali, H. Cimenoglu // Surface & Coatings Technology. — 2008. — Vol. 202, Issue 19. — PP. 4583—4590.

Aich, S. TiB whisker coating on titanium surfaces by solid-state diffusion: Synthesis, microstructure, and mechanical properties / S. Aich, K.S. Ravi Chandran // Metallurgical and Materials Transactions A. — 2002. — Vol. 33, Issue 11. — PP. 3489—3498.

Basu, B. Processing and properties of monolithic TiB2 based materials / B. Basu, G.B. Raju, A.K. Suri // International Materials Reviews. — 2006. — Vol. 51, Issue 6. — PP. 352—374.

Вплив температури на поверхневе зміцнення титанових сплавів при контактному насиченні з аморфного бору у вакуумі / І. Погрелюк, В. Федірко, З. Сірик, О. Самборський // Вісник ТДТУ. — 2009. — Т. 14, № 1. — С. 28—33.

Притула, А.О. Взаємодія аморфного бору з титановими сплавами у газовому кисневмісному середовищі / А.О. Притула, І.М. Погрелюк, В.М. Федірко // Фіз.-хім. механіка матеріалів. — 2006. — Т. 42, № 5. — С. 30—34.

Downloads

Published

2015-11-12

How to Cite

[1]
Kostyk, K. and Kostyk, V. 2015. Nanodispersed boriding of titanium alloy. Proceedings of Odessa Polytechnic University. 3(47) (Nov. 2015), 17–23. DOI:https://doi.org/10.15276/opu.3.47.2015.04.