The use of high-temperature nuclear reactors in hydrogen production technologies

Authors

DOI:

https://doi.org/10.15276/opu.2.68.2023.02

Keywords:

high-temperature reactor, hydrogen, nuclear power plant, conversion

Abstract

The possibility of using high-temperature gas-cooled nuclear reactors (HTGR) for hydrogen production as an alternative to organic fossil fuel is considered. An overview of modern technologies of hydrogen production and its advantages as an energy carrier was conducted. The structure of world production and consumption of hydrogen is given. The exceptional properties of hydrogen as an energy carrier and component of various technological processes reveal the prospect of its application in various fields of energy, transport and industry. If previously the main advantages of hydrogen were considered to be its energy intensity, ability to store and distribute, now and for the future the key factor is its environmental cleanliness and the ability to decarbonize transport, chemical, petrochemical, metallurgical industries and the utility sector. Currently, the majority of hydrogen and hydrogen-containing products are produced using steam conversion of natural gas. At the same time, 40...50% of natural gas is spent on the energy supply of the conversion process. In order to save natural gas and reduce the burden on the environment, methane steam conversion schemes with heat input from a high-temperature gas-cooled reactor have been developed. For conversion, a temperature level of 1000...1200 K is required. It is this temperature level that HTGR can provide. The proposed scheme of a multi-purpose nuclear power plant (MNPP) with a HTGR for the production of hydrogen during the steam conversion of natural gas and electricity generation and the main parameters of an MNPP with a HTGR with a thermal capacity of 3000 MW are calculated. A decrease in the consumption of natural gas was determined, comparable to the traditional technologies.

Downloads

Download data is not yet available.

Author Biography

Viacheslav Dubkovskiy, Odessа Polytechnic National University

DSc, Prof.

References

Шрайбер О.А., Дубровський В.В., Тесленко О.І. Сучасний стан і перспективи розвитку водневої енергетики у світі. Вчені записки НТУ ім. І.В. Вернадського. Серія:Технічні науки. 2021. Том 32(71), №5, C. 199–209. DOI: https://doi.org/10.32838/2663-5941/2021.5/30 .

Hydrogen production using nuclear energy. Vienna: IAEA, 2013. 400 p. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1577_web.pdf . (дата звернення: 18.08.2023).

Шевченко В.Г., Ляшенко В.І., Осадча Н.В. Світові тенденції розвитку водневої енергетики. Вісник економічної науки України. 2021. №2(41). С. 17–26. DOI: htths://doi.org/10.37405/1729-7206.2021.2(41).17-26.

Shulten R. and Kuaeler K. High temperature reactor and application to nuclear procesis heat. Annals of Nuclear Energy. 1976. V. 3. P. 95–111.

Hydrogen Basics. AFDS. URL: https://afdc.energy.gov/fuels/hydrogen_basics.html .

Водень в альтернативній енергетиці та новітніх технологіях / за ред. В.В. Скорохода, Ю.М. Соломіна. Київ : КІМ, 2015. 294 с.

Дубковский В.А. Рациональные процессы, циклы и схемы энергоустановок. Монография. Одесса : Наука и техника, 2003. 224 с.

Stern A.G. A new sustaina- ble hydrogen clean energy paradigm. International Journal of Hydrogen Energy. 2018. Vol. 43, Issue 9. P. 4244–4255. DOI: https://doi.org/10.1016/j.ijhydene.2017.12.180 .

Burhan M., Shahzad M.W., Choon N.K. Hydrogen at the Rooftop: compact CPV-hydrogen system to convert sunlight to hydrogen. Applied Thermal Engineering. 2018. Vol. 132. P. 154–164. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.094 .

Яцков В.М., Корчик Н.М., Пророк О.А. Основні технологічні схеми базових неорганічних виробництв: навч. посібник. Рівне : НУВГП, 2020. 212 с.

Дубковський В.О., Лапшов В.М. Деякі загальні властивості термодинамічних процесів. Монографія. Київ : ІСДО, 1995. 84 с.

Downloads

Published

2023-10-26

How to Cite

[1]
Dubkovskiy, V. and Segeda, V. 2023. The use of high-temperature nuclear reactors in hydrogen production technologies. Proceedings of Odessa Polytechnic University. 2(68) (Oct. 2023), 19–24. DOI:https://doi.org/10.15276/opu.2.68.2023.02.