Surface hardening of steel parts
DOI:
https://doi.org/10.15276/opu.1.51.2017.04Keywords:
surface hardening of steel, combined treatment, laser treatment, nitriding, surface hardness, thickness of the hardened layerAbstract
Development of new resource-saving and cost-effective technologies of combined hardening of steel parts with a significant reduction of the process duration is an important and urgent task. Aim:The aim of the work is to create a technology for combined toughening of steel parts to provide high operational properties of the steel surface layer by intensifying the nitriding process through the laser pre-treatment of steel products. Materials and Methods: Materials for study are types of steels 40, 40Cr and 38Cr2MoAl. Laser treatment of steel was performed at the LATUS-31 installation. Nitriding carried out in the environment of fine nitrogen-containing substance with activators at a temperature of 530…560ºC during 2…3 hours. The nitriding process was carried out in the closed atmosphere in the chamber furnace without application of the protective atmospheres. Influence of laser pre-treatment and final nitriding on structure, thickness, phase structure, microhardness of surface layers of steel samples has been investigated. Results: It is shown that preliminary hardening by laser increases surface hardness in 0.88…1.15 times after nitriding, depending on brand of steel and speed of a laser beam movement, in comparison with steel nitriding in similar conditions. The combined treatment promotes significant increase in the strengthened layer – up to 0.49 mm for 40 steel type, up to 0.55 mm for 40Cr steel type and up to 0.65 mm for 38Cr2MoAl steel type.
Downloads
References
Hahn, D.W. Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields / D.W. Hahn, N. Omenetto // Applied Spectroscopy. – 2012. – Vol. 66, Issue 4. – PP. 347-419.
Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses / M. Shimizu, M. Sakakura, M. Ohnishi, etc. // Journal of Applied Physics. – 2010. – Vol. 108, Issue 7. – P. 073533.
Influence of laser radiation on structure and properties of steel / O.V. Lobankova, I.Y. Zykov, A.G. Melnikov, S.B. Turanov // Proceedings of the International Conference on Advanced Materials, Structures and Mechanical Engineering, Incheon, South Korea, May 29-31, 2015. – London: CRC Press, 2016. – PP. 75-78.
Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation / H. Kenar, E. Akman, E. Kacar, etc. // Colloids and Surfaces B: Biointerfaces. – 2013. – Vol. 108. – PP. 305-312.
Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation / K. Okamuro, M. Hashida, Y. Miyasaka, etc. // Physical Review B. – 2010. – Vol. 82, Issue 16. – P. 165417.
Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser / B. Mahmoudi, M.J. Torkamany, A.R. Sabour Rouh Aghdam, J. Sabbaghzade // Materials & Design. – 2010. – Vol. 31, Issue 5. – PP. 2553-2560.
Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy / J. Yang, S. Sun, M. Brandt, W. Yan // Journal of Materials Processing Technology. – 2010. – Vol. 210, Issue 15. – PP. 2215-2222.
Исследование влияния режимов лазерной закалки на изменение свойств сталей / А.Ф.И. Идан, О.В. Акимов, Л.Ф. Головко [и др.] // Восточно-Европейского журнала передовых технологий. – 2016. – № 2/5 (80). – С. 69-73.
Assunção, E. Comparative study of laser welding in tailor blanks for the automotive industry / E. Assunção, L. Quintino, R. Miranda // The International Journal of Advanced Manufacturing Technology. – 2010. – Vol. 49, Issue 1. – PP. 123-131.
Моделирование глубины диффузионного слоя и поверхностной твердости стали при ионном азотировании / М.К. Моханад, В.О. Костик, Д.А. Демин, Е.А. Костик // Восточно-Европейского журнала передовых технологий. – 2016. – № 2/5 (80). – С. 45-49.
Kostyk, K. Development of innovative method of steel surface hardening by a combined chemical-thermal treatment / K. Kostyk // Eureka: Physics and Engineering. – 2016. – № 6. – PP. 46-52.
Пат. 2415964 Российская Федерация, МПК С23С 8/26. Способ низкотемпературного азотирования стальных деталей / Петрова Л.Г., Чудина О.В., Александров В.А., Брежнев А.А., Барабанов С.И.; патентообладатель Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный институт (государственный технический университет). – № 2009139309/02; заявл. 26.10.2009; опубл. 10.04.2011; Бюл. № 10.
Пат. 25412 Україна, МПК С23С 8/02. Спосіб отримання зносостійких дискретних азотованих шарів / Кіндрачук М.В., Іщук Н.В., Писаренко В.М., Головко Л.Ф., Мутхі Собхі Яхья; заявник та патентовласник НТУУ «КПІ». – № u200703002; заяв. 22.03.2007; надр. 10.08.2007; Бюл. № 12.
Пат. 19551 Україна, МПК C23C 8/02. Спосіб комбінованої лазеро-хіміко-термічної обробки матеріалів / Іщук Н.В., Писаренко В.М., Кіндрачук М.В., Головко Л.Ф.; заявник та патентовласник НТУУ «КПІ». – № u200607450; заяв. 04.07.2006; надр. 15.12.2006; Бюл. № 12.