Modelling of road traffic for traffic flow optimization of modern regional center as an example of Odessa

Authors

  • S.V. Myronenko Odessа Polytechnic National University
  • D. Gillis Ghent University

DOI:

https://doi.org/10.15276/opu.3.50.2016.10

Keywords:

transport flows, the transport network models, capacity, street and road network, vehicles, traffic management

Abstract

At present sharply there is a problem of traffic management especially in big cities. The increase in the number of vehicles, both personal and public, led to congestion of city roads, many hours of traffic jams, difficulty of movement of pedestrians, increase the number of accidents, etc. Aim: The aim of the study is to evaluate the possibility of using simulation models to solve problems of analysis and optimization of traffic flows. To achieve this goal in a simulation environment the data base of the transport network will be developed. Materials and Methods: The problem of analysis and optimization of traffic flow is considered by the example of the city of Odessa (Ukraine), the results and recommendations can be easily adapted for other cities of Ukraine, and for the cities of most countries of the former socialist bloc. Features of transport systems make it impossible to build an adequate analytical model to explore options for the management of the system and its characteristic in different conditions. At the same time simulation modelling as a method to study such objects is a promising for the solution to this problem. As a simulation environment an OmniTRANS package as a universal tool for modeling of discrete, continuous and hybrid systems. Results: With OmniTRANS programs the model of traffic in Odessa was derived and the intensity of the traffic flow. B first approximation the transport network of the central district of the city was considered and built; without calibration and simulation it was developed a database of elements of the transport network and shown how it can be used to solve problems of analysis and optimization of traffic flows. Models constructed from elements of created database, allows you to change the level of detail of the simulated objects and phenomena, thereby obtaining models as macro and micro level.

Downloads

Download data is not yet available.

Author Biographies

S.V. Myronenko, Odessа Polytechnic National University

PhD, Assoc.Prof.

D. Gillis, Ghent University

PhD

References

Treiber, M. Traffic flow dynamics: Data, models and simulation / M. Treiber, A. Kesting. — Heidelber: Springer, 2013. — 503 p.

Urban traffic networks: Dynamic flow modeling and control / ed. by N.H. Gartner, G. Improta. — Berlin: Springer, 1995. — 375 p.

Chowdhury, M.A. Fundamentals of intelligent transportation systems planning / M.A. Chowdhury, A.W. Sadek. — Boston: Artech House, 2003. — 190 p.

Ni, D. Traffic flow theory: Characteristics, experimental methods, and numerical techniques / D. Ni. — Amsterdam: Elsevier, 2016. — 396 p.

Захаров, Ю.И. Основные современные инструменты имитационного моделирования дорожных потоков / Ю.И. Захаров, Е.С. Карнаух // Вісник Придніпровської державної академії будівництва та архітектури. — 2014. — № 1. — С. 46—51.

Абрамова, Л.С. Постановка задачи адаптивного управления дорожным движением / Л.С. Абрамова, Н.С. Чернобаев // Вісник Донецького інституту автомобільного транспорту. — 2009. — № 1. — С. 7—12.

Григоров, М.А. Проблемы моделирования и управления движением транспортных потоков в крупных городах: монография / М.А. Григоров, А.Ф. Дащенко, А.В. Усов. — О.: Астропринт, 2004. — 269 c.

OmniTRANS: Transport Planning Software [Електронний ресурс] / DAT.Mobility. — 2014. — Режим доступу: http://www.omnitrans-international.com/en (Дата звернення: 11.06.2016).

Downloads

Published

2016-10-28

How to Cite

[1]
Myronenko, S. and Gillis, D. 2016. Modelling of road traffic for traffic flow optimization of modern regional center as an example of Odessa. Proceedings of Odessa Polytechnic University. 3(50) (Oct. 2016), 54–61. DOI:https://doi.org/10.15276/opu.3.50.2016.10.

Issue

Section

Computer and information networks and systems. Manufacturing automation