The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials
DOI:
https://doi.org/10.15276/opu.3.47.2015.15Keywords:
dissipative properties, damping decrement, an acoustic measurement method, measurement uncertaintyAbstract
The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.
Downloads
References
Голофеева, М.А. Акустический метод контроля синтеграновых изделий / М.А. Голофеева // Проблеми техніки. — 2013. — № 3. — С. 119—124.
Prandina, M. An assessment of damping identification methods / M. Prandina, J.E. Mottershead, E. Bonisoli // Journal of Sound and Vibration. — 2009. — Vol. 323, Issues 3–5. — PP. 662—676.
Slaev, V.A. Metrology and theory of measurement / V.A. Slaev, A.G. Chunovkina, L.A. Mironovsky. — Berlin; Boston: De Gruyter, 2013. — 560 p.
Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities / D. Dubois, L. Foulloy, G. Mauris, H. Prade // Reliable Computing. — 2004. — Vol. 10, Issue 4. — PP. 273—297.
Захаров, И.П. Особенности оценивания неопределенностей результатов параллельных измерений / И.П. Захаров, А.П. Сергиенко, М.П. Сергиенко // Системи обробки інформації. — 2008. — Вип. 4(71). — С. 59—62.