Models and methods for improving the operation of the energy facility control system

Authors

DOI:

https://doi.org/10.15276/opu.2.68.2023.10

Keywords:

model-based system, combustion, identification of fuel composition, computer-automated system, mathematical model, drum steam generator, real-time controller, automatic control system, fuzzy control system, optimal solution search method

Abstract

This article is devoted to improving methods and models for a computer-integrated control system (CICS) that monitors the wear of heat exchange surfaces of pipes in steam boilers at coal-fired thermal power stations (TPP), in particular for coal with unknown abrasive composition. The system uses real-time coal quality data to 1manage the abrasive, optimize coal distribution, and verify coal quality to reduce costs. It is described that the difficulties faced by the global coal industry are related to quality, price and environmental issues, and the transition to sustainable energy is complicated by this diversity. Efficient power generation depends on accurate identification of fuel composition and minimizing damage from abrasive impurities in the fuel of heat exchangers. Despite the existing analytical methods, there is a need for improved diagnostic technology, which involves the integration of automated systems to improve efficiency and sustainability. The paper presents a mathematical model that calculates the effect of different types of coal and impurities on the wear of heat exchange tubes, maximizing service life and minimizing costs. It includes a Cochran sampling rule to improve coal quality control. An automated coal quality management method was also developed to reduce wear from abrasive coal impurities. It includes a stepwise supplier selection and stock utilization method, enhancing wear control using the Cochran stepwise sampling method. In addition, a fuzzy logic-based control device distributes the flow in such a way as to ensure satisfactory coal quality, emphasizing the need for continuous system monitoring. A model-based CICS has been developed that controls coal flow based on real-time impurity identification, resulting in significant cost savings and extended overhaul intervals. Computational experiments confirm that the CICS can more than double the service life of heat exchange tubes by maintaining a satisfactory thickness, thereby postponing repairs and reducing operating costs. Overall, this article presents a comprehensive approach to managing and optimizing heat exchanger tube wear at TPP using modelling, real-time data analysis, and automated control systems to improve efficiency and sustainability.

Downloads

Download data is not yet available.

References

Michal Vaněk, Petr Bora, Ewa Wanda Maruszewska, Alena Kašparková. Benchmarking of mining companies extracting hard coal in the Upper Silesian Coal Basin. Resources Policy. 2017. Vol. 53. P. 378–383. DOI: https://doi.org/10.1016/j.resourpol.2017.07.010.

Monika Papież, Sławomir Śmiech. Dynamic steam coal market integration: Evidence from rolling cointegration analysis. Energy Economics. 2015. Vol. 51. P. 510–520. DOI: https:doi.org/10.1016/j.eneco.2015.08.006.

Price and volatility spillovers across the international steam coal market / Jonathan A. Batten, Janusz Brzeszczynski, Cetin Ciner, Marco C.K. Lau, Brian Lucey, Larisa Yarovaya. Energy Economics. 2019. Vol. 77. P. 119–138. DOI: https://doi.org/10.1016/j.eneco.2018.12.002.

Guan R., Lu Y., Duan W., Wang, X. Guided waves for damage identification in pipeline structures: A review. Struct Control Health Monit. 2017. Vol. 24:e2007. DOI: https://doi.org/10.1002/stc.2007.

Chugunkov D.V., Seyfelmliukova G.A., Kuzema V.P., Bogdanova A.E. Research on structure of a ash-slag pulp and its influence on pipelines’ attrition of a thermal power plants’ hydraulic ash removalsystem. Journal of Physics: Conference Series. 2019. Vol. 1370 (1). DOI: https://doi.org/10.1088/1742-6596/1370/1/012015.

Sandlin S., Hokkanen A., Varis T. Coating Integrated Optical Fibres for Monitoring of Boiler Heat Transfer Surfaces. Energy Materials 2.2. 2007. P. 122–128. URL: https://www.academia.edu/91949828/Coating_integrated_optical_fibres_for_monitoring_of_boiler_heat_transfer_surfaces.

Zator S., Tomaszewski M., Lasar M. A Diagnostic Method Based on Active Thermography for the Degradation Assessment of Power Plant Boiler Tubes. Sensors. 2022. Vol. 22(21):8401. DOI: https://doi.org/10.3390/s22218401.

Mark J. Bergander. EMAT thickness measurement for tubes in coal-fired boilers. Applied Energy. 2003. Vol. 74, (Issues 3–4). P. 439–444. DOI: https://doi.org/10.1016/S0306-2619(02)00198-8.

V. Ivantsiv, J. K. Spelt, M. Papini. Mass flow rate measurement in abrasive jets using acoustic emission. Measurement Science and Technology. 2009. Vol. 20 (9). DOI: https://doi.org/10.1088/0957-0233/20/9/095402.

Feng Liang, Jianmin Gao, Liang Xu. Thermal performance investigation of the miniature revolving heat pipes using artificial neural networks and genetic algorithms. International Journal of Heat and Mass Transfer. 2020. Vol. 151. 119394. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119394.

Luttrell G.H., Honaker R.Q. Coal Preparation. In: Meyers R.A. (eds). Encyclopedia of Sustainability Science and Technology. Springer. 2012. P. 2194–2222. DOI: https://doi.org/10.1007/978-1-4419-0851-3_431.

Kadagala M.R., Nikkam S., Tripathy S.K. A review on flotation of coal using mixed reagent systems. Minerals Engineering. 2021. Vol. 173. 107217. DOI: https://doi.org/10.1016/j.mineng.2021.107217.

Moshfiqur Rahman, Deepak Pudasainee, Rajender Gupta. Review on chemical upgrading of coal: Production processes, potential applications and recent developments. Fuel Processing Technology. 2017. Vol. 158. P. 35–56. DOI: https://doi.org/10.1016/j.fuproc.2016.12.010.

Barnwal J.P., Patil D.D., Rao T.C. Enrichment of coal macerals using froth flotation. Mining, Metallurgy & Exploration. 2000. Vol. 17. P. 56–61. DOI: https://doi.org/10.1007/BF03402829.

Dong Z., Wang R., Fan M., Fu X. Switching and optimizing control for coal flotation process based on a hybrid model. PLoS ONE. 2017. Vol. 12(10). e0186553. DOI: https://doi.org/10.1371/journal.pone.0186553.

Paresh Haribhakti, P.B. Joshi, Rajendra Kumar. Chapter 8: Remaining Life Assessment of Boiler Tubes. Failure Investigation of Boiler Tubes: A Comprehensive Approach, ASM International. 2018. DOI: https://doi.org/10.31399/asm.tb.fibtca.t52430409.

The use of strain gauges in vibration-based damage detection. / Fabio Luis Marques dos Santos, Bart Peeters, Jenny Lau, Wim Desmet, Luiz Carlos Sandoval Goes. Journal of Physics: Conference Series, 11th International Conference on Damage Assessment of Structures (DAMAS 2015). 2015. Vol. 628. P. 24–26. DOI: https://doi.org/10.1088/1742-6596/628/1/012119.

AI-Enabled Robots for Automated Nondestructive Evaluation and Repair of Power Plant Boilers / Zhang Hao, Deng Yiming, Liu Stephen, Petruska Andrew, Udpa Lalita, Yu Zhenzhen. Final Report. United States. 2022. DOI: https://doi.org/10.2172/1875707.

Repairing Damaged Screen Pipes with Tube Hydroforming: Experiments and Feasibility Analysis / Liu S., Wang H., Lan W., Liu Y., Che J., Ma S. Machines. 2022. Vol. 10(5):391. DOI: https:doi.org/10.3390/machines10050391.

A Scoping Review of Pipeline Maintenance Methodologies Based on Industry 4.0. / Naranjo J.E., Caiza G., Velastegui R., Castro M., Alarcon-Ortiz A., Garcia M.V. Sustainability. 2022. Vol. 14(24). 16723. DOI: https://doi.org/10.3390/su142416723.

Materials for Advanced Power Engineering. Pt. 1. Jülich : Forschungszentrum Zentralbibliothek. 2006. URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/077/38077087.pdf.

Xiaoling Luo, Zhi Zhang. Leakage Failure Analysis in a Power Plant Boiler. IERI Procedia. 2013. Vol. 5. P. 107–111. DOI: https://doi.org/10.1016/j.ieri.2013.11.078.

Zator S., Tomaszewski M., Lasar M. A Diagnostic Method Based on Active Thermography for the Degradation Assessment of Power Plant Boiler Tubes. Sensors. 2022. Vol. 22(21). 8401. DOI: https://doi.org/10.3390/s22218401.

On-line measurement of pneumatic conveying of pulverized coal in pipes / Jia Zhi-hai, Fan Xue-liang, Li Jun-feng, Cai Xiao-shu, Liu Ji-ze, Cong Xiao, Jia Jing-chen. Journal of Physics: Conference Series. 2009. Vol. 147. 01276. DOI: https://doi.org/10.1088/1742-6596/147/1/012076.

Grishyn M.V., Tarakhtij O.S. Simulation modelling of sampling and replacement of coal suppliers for thermal power plants. Applied Aspects of Information Technology. 2023. Vol. 6, No. 2. P. 175–189. DOI: https://doi.org/10.15276/aait.06.2023.13.

Грішин М.В., Беглов К.В. Оцінка ефективності збагачення палива для зменшення ризику витрат ТЕС. Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки. 2021. Том. 32 (71), № 3. С. 82–89. DOI: https://doi.org/10.32838/2663-5941/2021.3/14.

Mathematical model of a steam boiler as a control plant / Grishyn M. V., Matiko F.D., Tarakhtij O. S., Zhanko K. O., Shynder A. A. Applied Aspects of Information Technology. 2023. Vol. 6, No.3. 244–257. DOI: https://doi.org/10.15276/aait.06.2023.17.

Gligoric M., Urošević K., Lutovac S., Halilovic D. Optimal coal supplier selection for thermal power plant based on MCRAT method. eNergetics,7th Virtual International Conference on Science. Technology and Management in Energy. Belgrade: Serbia. 2021. pp. 263–272. URL: https://energetics.cosrec.org/wp-content/uploads/2022/03/eNergetics_2021.pdf.

Jansuwan S., Chen A., Xu X. Analysis of freight transportation network redundancy: An application to Utah’s bi-modal network for transporting coal. Transportation Research Part A: Policy and Practice. 2021. Vol. 151. P. 154–171. DOI: https://doi.org/10.1016/j.tra.2021.06.019.

Masoud M., Kozan E., Kent G., Liu S. Q. A new constraint programming approach for optimizing a coal rail system. Optimization Letters. 2017. Vol. 11. P. 725–738. DOI: https://doi.org/10.1007/s11590-016-1041-5.

Грішин М.В., Беглов К.В. Удосконалення автоматизованої системи моніторингу зменшення ризику критичного пошкодження поверхні теплообміну парового котла вугільної ТЕС шляхом контролю зольності вугілля. Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки. 2023. Том 34 (73) №3. С. 115–122. DOI: https://doi.org/10.32782/2663-5941/2023.3.1/18

Downloads

Published

2023-11-23

How to Cite

[1]
Hrishyn, P., Grishyn, M. and Zhanko, K. 2023. Models and methods for improving the operation of the energy facility control system. Proceedings of Odessa Polytechnic University. 2(68) (Nov. 2023), 84–97. DOI:https://doi.org/10.15276/opu.2.68.2023.10.

Issue

Section

Informacion technology. Automation