Peculiarities of mathematical modeling of an induction motor taking into account its nonlinearities
DOI:
https://doi.org/10.15276/opu.2.66.2022.04Keywords:
induction motor, mathematical model, IM saturation, current displacement, non-linearity of IM parametersAbstract
The choice of the mathematical description of the induction motor has been made. Modeling of an induction motor in three-phase natural axes A, B, C is proposed, taking into account the nonlinearity of the parameters of an induction motor. The purpose of the study is aimed at improving the correspondence of the model of an induction motor to a real motor by taking into account the nonlinearities of its parameters. The mathematical model, obtained taking into account assumptions and idealization, is a system of differential, algebraic and logical equations that reflect the conditions of electrical and mechanical equilibrium and the conditions of electromechanical energy conversion. The electrical equilibrium equations are compiled according to Kirchhoff’s laws and Maxwell’s equations, and the mechanical ones – according to the d’Alembert and Lagrange equations. As state variables, the stator and rotor flux links are used, which are determined at each step of numerical integration. For the adequacy of the model in the calculations, it is necessary to take into account a number of non-linearities of the IM – the effect of current displacement and machine saturation, losses in steel, changes in operating temperature. The choice of the parameter nonlinearity to be taken into account, as well as the accounting methods, are individual and are determined by the complexity of the tasks that are set for the model. The completeness of taking into account the non-linear parameters of the IM is determined by the requirements for the accuracy of the study and necessarily provides for taking into account the most influencing the performance of the machine.
Downloads
References
Осташевський М.О., Юр’ева О.Ю. Електричнi машини i трансформатори: навч. посiбник. за ред. В. І. Мiлих. Киiв : Каравела, 2018. 452 с.
Бойко А.О., Бересан А.А. Моделирование системы ТПН-АД. Математическое моделирование. 2010. С. 39–42.
Bharti P., Mishra A. Mathematical modeling and performance investigation of six-phase and three-phase induction motors, 2022. 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), 2022, pp. 1–6.
Mölsä E., Saarakkala S.E., Hinkkanen M., Arkkio A., Routimo M.A dynamic model for saturated induction machines with closed rotor slots and deep bars. IEEE Transactions on Energy Conversion. 2020. vol. 35, no. 1. P. 157–165.
Maksoud S.A.A., Chestyunina T.V. Simulation and Experimental Increased Temperature Effect on Induction Motor Parameters. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018, pp. 258–263.
Boglietti A., Nategh S., Roggio L. Detailed and Reduced-order LP Thermal Models for Open Self-ventilated Induction Motors Used in Traction Applications. 2020 International Conference on Electrical Machines (ICEM), 2020, pp. 805–811. DOI: 10.1109/ICEM49940.2020.9270975.
Nair D. G., Rasilo P., Arkkio A. Sensitivity analysis of inverse thermal modeling to determine power losses in electrical machines. IEEE Transactions on Magnetics. 2018, vol. 54, no.11. P. 1–5.
M.D. de Castro e Silva, A. de Leles Ferreira Filho, Rosa G.Z., Abada C.C. Evaluation of the performance of a simplified thermal model of a three phase induction motor submitted to voltage imbalances. 2018, 18th International Conference on Harmonics and Quality of Power (ICHQP), 2018, pp. 1–6.
Lozanov Y., Tzvetkova S., Petleshkov A. Thermal diagnostic model of induction motor operating in steady state mode. 2021 13th Electrical Engineering Faculty Conference (BulEF), 2021, pp. 1–6.
Metelkov V.P., Ziuzev A.M., Kondakov K.A. TEFC Motor Thermal Protection System Based on a Two-channel Thermodynamic Model. 2021, 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), 2021, pp. 1–6.
Definition and experimental validation of a second-order thermal model for electrical machines / E. Armando, A. Boglietti, F. Mandrile, E. Carpaneto, S. Rubino, D.G. Nair. IEEE Transactions on Industry Applications. 2021, vol. 57, no. 6, P. 5969–5982.
Толочко О. І. Моделювання електромеханічних систем. Математичне моделювання систем асинхронного електроприводу: навчальний посібник. Київ : НТУУ «КПІ», 2016. 150 с.
Основи електропривода виробничих машин та комплексів: навч. посіб. / В.Е. Воскобойник, В.А. Бородай, Р.О. Боровик, О.Ю. Нестерова. Д. : Національний ТУ «Дніпровська політехніка», 2021. 254 с.
Шевченко І.С., Морозов Д.І. Спеціальні питання теорії електропривода. Динаміка асинхронного електропривода: навч. посіб. К. : Кафедра, 2014. 328 с.