Analytical study of electromagnetic wave propagation in the finite homogeneous lines
DOI:
https://doi.org/10.15276/opu.1.43.2014.36Keywords:
Maxwell differential system, general wave equation, boundary problem regarding electromagnetic field intensitiesAbstract
Suggested results represent the particular part of the general scientific tendency dealing with mathematical modeling and analytical study of electromagnetic field phenomena described by the systems of PDEs (partial differential equations). Specific electrodynamic engineering process is given by the differential Maxwell system whose effective research implies correct theoretical and physical statement in terms of the general wave PDE regarding all field intensities. Basing on this equation, the corresponding boundary problem determines electromagnetic wave propagation in the isotropic homogeneous finite lines under expofunctional excitations and arbitrary large time intervals. Explicit solution of the aforesaid problem is found using inverse matrix operator construction and the integral transform method. Solvability criterion is also proved, supporting correctness of the physical / engineering conditions and mathematical computing technique. Proposed analytic approach represents part of the general investigating electromagnetic field behavior for arbitrary media in detail.
Downloads
References
Proceedings of the International Scientific Conference on the Mathematical Methods in Electromag-netic Theory (MMET 12), Kharkov, August 2012. — Danvers: IEEE, 2012. — 594 p.
DmitrievaI.Yu. Diagonalization of the differential operator matrix in the case of the multidimen-sional circuits / I.Yu. Dmitrieva, A.M. Ivanitckiy // НауковіпраціОНАЗім. О.С. Попова. — 2009. — № 1. — С. 36 — 51.
Иваницкий, А.М. Зависимость третьего и четвертого уравнений Максвелла от первых двух при произвольном возбуждении электромагнитного поля / А.М. Иваницкий // Наукові праці ОНАЗ ім. О.С. Попова. — 2004. — № 2. — С. 3 — 7.
Dmitrieva, I.Yu. Signal propagation in semi-infinite lines and its mathematical representation / I.Yu. Dmitrieva // ПраціОдеськогополітехнічногоуніверситету. — Одеса, 2013 — Вип. 2(41). — С. 261 — 266.
Dmitrieva, I. Mathematical modeling of wave propagation in the finite homogeneous lines / I. Dmitrieva // Hyperion International Journal of Econophysics & New Economy. — 2013. — Vol. 6, Iss. 2. — PP. 219 — 229.
Дмитрієва, І.Ю. Поширенняелектромагнітниххвильводноріднихлініяхприекспофункціональнихвпливах / І.Ю. Дмитрієва // НауковіпраціОНАЗім. О.С. Попова. —2013. — № 1. — С. 77 — 82.