Conducting local cutout from the surface of the VVER-1000 reactor vessel

Authors

  • Oleksii Rudenko Institute of Solid State Physics Materials and Technologies, National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine https://orcid.org/0000-0002-4389-6252
  • Victor Voyevodin Institute of Solid State Physics Materials and Technologies, National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine https://orcid.org/0000-0003-2290-5313
  • Sergiy Gozhenko Institute of Solid State Physics Materials and Technologies, National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine https://orcid.org/0000-0001-6190-1134
  • Pavel Mishchenko Institute of Solid State Physics Materials and Technologies, National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine https://orcid.org/0000-0001-6035-4968

DOI:

https://doi.org/10.15276/opu.1.57.2019.07

Keywords:

reactor vessel, surveillance-specimens, radiation embrittlement, brittleness critical temperature, dose dependence

Abstract

Integrity of the reactor pressure vessel is a critical element in demonstrating the capability of nuclear power plant for operation to at least 80 years. Long-term exploitation of materials at elevated temperatures is manifested in a loss of ductility and a marked shift in the interval from ductile fracture to brittle transition to higher temperatures. Embrittlement of the VVER reactor vessel is associated with many factors that result from prolonged operation. Radiation embrittlement is a key factor that determines the operational long-term of any reactor pressure vessel (RPV). Given that VVERs were intended to operate for 40 years, there are issues that need to be addressed to reduce the uncertainties in regulatory application. Existing approaches in the nuclear power industry of Ukraine to assess the fracture toughness of the irradiated materials of pressure vessel are based on empirical correlations between the parameters of crack resistance and impact strength which leads to a reassessment of the long-term safe operation of RPV. VVER reactors long-term operation require accurate predictions increases in the ductile-brittle transition temperature (ΔTK) of reactor pressure vessel steels of neutron irradiation-induced that are outside the existing database. For example, the neutron dose in RPV will be at least doubled. Associated with this factor are uncertainties regarding flux effects, effects of relatively high nickel content, uncertainties regarding application of fracture mechanics and thermal annealing. In this paper, it is proposed to conduct a research of the metal on fracture toughness, directly obtained from the reactor pressure vessel, in order to study the ΔTK prediction on operating time, irradiation, temperature and number of start/stop cycles when testing sub-sized specimens. To date experimental methods of fracture mechanics allow the directly to determine the properties of materials through the testing of sub-size specimens, which allows to determine long-term of RPV. In NSC KIPT have been developed the equipment, methodology and experience, which allows obtaining additional information in the analysis of the state metal of the equipment, which has been in long-term operation.

Downloads

Download data is not yet available.

Author Biographies

Victor Voyevodin, Institute of Solid State Physics Materials and Technologies, National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine

DSc, Prof.

Sergiy Gozhenko, Institute of Solid State Physics Materials and Technologies, National Science Center “Kharkov Institute of Physics and Technology” of the National Academy of Sciences of Ukraine

PhD

References

Ерак Д.Ю., Журко Д.А., Папина В.Б. Интерпретация результатов ускоренного облучения мате-риалов корпусов реакторов ВВЭР-1000. Проблемы прочности. 2013. № 4. C. 51–63.

Чернобаева А.A., Платонов П.А. Особенности радиационного охрупчивания материалов корпу-сов реакторов в различных диапазонах флюенсов. ВАНТ, Серия Материаловедение и новые ма-териалы. 2009. Вып. 1(73). C. 206–219.

Марголин Б.З., Юрченко Е.В., Морозов А.М., Пирогова Н.Е. Анализ связи между механизмами радиационного охрупчивания и влиянием флакса нейтронов применительно к материалам кор-пусов реакторов ВВЭР. Проблемы прочности. 2013. № 4. C. 27–50.

Руденко А.Г., Шиляев Б.А., Воеводин В.Н., Ожигов Л.С. Эволюция радиационного повреждения материалов конструкций реактора ВВЭР-1000. ВАНТ. 2008. № 2. C. 78–82

Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradia-tion annealing / М.К. Miller, А.А. Chernobaeva, Y.I. Shtrombakh, K.F. Russell, R.K. Nanstad, D.Y. Erak, O.O. Zabusov. J. Nucl. Mat. 2009. 385. C. 615–620.

Связь служебных характеристик сталей корпусов ядерных реакторов с эволюцией их нанострук-туры под действием рабочих температур и облучения / Б.А. Гурович, Е.А. Кулешова, Д.А. Маль-цев, С.В. Федотова, А.С. Фролов. ВАНТ. 2013. № 2(84). C.3–10.

Ерак Д.Ю., Папина В.Б., Чернобаева А.А. Эффекты температурного старения в материалах свар-ных швов ВВЭР-1000. Материалы научн.-техн. конф. молодых специалистов 16 НПКб, 26–27 марта 2014 г. ОКБ ГИДРОПРЕСС.

Юханов В.А., Шур А.Д. Исследование термического старения корпусных сталей для атомных энергетических установок с целью обоснования ресурса оборудования на срок до 60 лет. Ми-ТОМ. 2006. №7(613). C. 23–27.

Гурович Б.А., Ерак Д.Ю., Журко Д.А., Кулешова Е.А., Чернобаева А.А. и др. Прогнозирование радиационного охрупчивания материалов корпусов ректоров ВВЭР-1000 при продлении срока службы. 9 МНТК Обеспечение безопасности АЭС с ВВЭР. Материалы научн.-техн. конф. 19–22 мая 2015 г. ОКБ ГИДРОПРЕСС. 2015.

Fukuya K. Current understanding of radiation-induced degradation in light water reactor structural ma-terials. Journal of Nuclear Science and Technology. 2013. Vol. 50, № 3, P. 213–254.

Accurate Determination and Benchmarking of Radiation Field Parameters, relevant for Pressure Vessel Monitoring (REDOS). Final Report EUR 21771 EN 2005 63 p.

Пугач А.М., Демехин В.Л., Буканов В.Н., Пугач С.М. Функционалы нейтронного потока воздей-ствующего на корпус реактора ВВЭР-440. Ядерна та радіаційна безпека. 2008. № 2. С. 28–31.

Голованов В.Н., Раецкий В.М. Эксперимент по уточнению кинетики радиационного охрупчива-ния металла на толщине корпуса реакторов ВВЄР-1000 и ВВЄР-1500 для уточнения степени консерватизма проектных решений. Материалы научн.-техн. конф. 23–25 мая 2005 г., ОКБ ГИД-РОПРЕСС. 2005.

Пластина металла JRQ как модель стенки корпуса реактора / М. Брумовский, В.Н. Голованов, В.М. Раецкий, М. Китка, Д.В. Козлов, Г.В. Шевляков. ВАНТ. 2007. № 2 .С. 113–118.

Cпосіб визначення критичної температури в’язко-крихкого переходу: пат. 97283, Україна: МПК14 G01N29/06, G01N29/14. № 21409040; заявл. 11.08.2014; опубл. 10.03.2015, Бюл. № 5. 4 с.

Ожигов Л.С., Митрофанов А.С., Толстолуцкая Г.Д. и др. Комплексные исследования металла ба-рабанов котлов тепловых электростанций. Теплоэнергетика. 2017. № 5. С. 40–47.

Alexander D.J., Klueh R.L. “Specimen Size Effects in Charpy Impact Testing” in Charpy Impact Test: Factors and Variables, ASTM STP 1072. J.M. Holt, Eds. American Society for Testing and Materials. Philadelphia. 1990.

Schubert L.E., Kumar A.S., Rosinski S.T., Hamilton M.L. Effect of Specimen Size on the Impact Prop-erties of Neutron Irradiated A533B Steel. J. Nucl. Mat. 1995. 225. С. 231–237.

Гринь Е.А., Анохов А.Е., Зеленский А.В., Федина И.В. Исследование металла барабанов паровых ко-тлов из стали 16ГНМ после длительной эксплуатации. Теплоэнергетика. 2010. №. 6 C. 37–42.

Downloads

Published

2019-04-24

How to Cite

[1]
Rudenko, O., Voyevodin, V., Gozhenko, S. and Mishchenko, P. 2019. Conducting local cutout from the surface of the VVER-1000 reactor vessel. Proceedings of Odessa Polytechnic University. 1, 1(57) (Apr. 2019), 52–64. DOI:https://doi.org/10.15276/opu.1.57.2019.07.

Most read articles by the same author(s)