Mathematical model for determining the internal electromagnetic field in a small fish (whitebait)
DOI:
https://doi.org/10.15276/opu.3.62.2020.13Keywords:
stimulation of development, electromagnetic fields, Maxwell's equations, integro-differential equations, quasi-statics, re-scatteringAbstract
The work is devoted to the development of a mathematical model that allows one to determine the electromagnetic fields of the microwave range inside sturgeon whitebait in order to stimulate their development. Our chosen method of calculating the mathematical model of internal electromagnetic fields in fish whitebait is planned to be used in the future for the experiment. This will increase the viability of whitebait as well as further healthy growth of sturgeon small fish and the selection of the best individuals for further artificial reproduction. A literature analysis of the influence of electromagnetic radiation on aquatic organisms and living organisms has been carried out. The effect of electromagnetic radiation on sturgeon whitebait in the first two weeks of their development is considered. In this case, the problems are solved using integro-differential equations in the case of quasi-statistics. A distinctive feature of this method is that it automatically satisfies the boundary conditions on the surface of the element. The solution of the problem of determining the electromagnetic fields inside the fish fry will be carried out taking into account its small size in comparison with the length of the falling electromagnetic radiation. In our case, as the larva grows, its size increases and the zero approximation give a rather crude result. Suggested expressions for zero, first, second, etc. approximations. Its allow take into account the growth of whitebait and the change in the ratio between their size and the incident wavelength. At the same time, it should be noted the high accuracy of this method, since already in the zero approximation its error did not exceed 15% in comparison with experimental studies of the scattering of electromagnetic fields on metal objects of ellipsoidal shape.
Downloads
References
Тітова Н. В. Аналіз інформаційних процесів у біологічних об'єктах під впливом зовнішніх елек-тромагнітних полів. Проблеми інформатизації : матеріали 4-ї міжнародної науково-технічної конф., 9–10 квітня 2015 p. Київ : Державний університет телекомунікацій, 2015. С. 79.
Тітова Н. В. Вирішення задачі про розсіювання пласкої хвилі на біологічному об'єкті / Інфор-маційні управляючі системи і технології. Т. II. : монографія. Бердянськ : Видавець Ткачук О.В., 2015. 256 c.
Васильева Е. Механизм воздействия электромагнитных полей на живые организмы. Вестник АГТУ. 2008. №3 (44). C. 186–191.
Лиман М.С., Барулин Н.В., Плавский В.Ю. Лазерно-оптические приборы для повышения эффек-тивности инкубации икры радужной форели и стерляди в рыбоводных индустриальных ком-плексах. Вопросы рыбного хозяйства Беларуси. 2016. №32. С. 121–134.
Биологическое и терапевтическое действие оптического излучения низкой интенсивности / В.Ю. Плавский В.Ю. и др. Весці нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2014. №1. С. 82–97.
Трухан Э.М. Введение в биофизику : Учебное пособие. М. : МФТИ, 2008. 241 с.
Бинги В.Н. Принципы электромагнитной биофизики. М. : ФИЗМАТЛИТ, 2011. 592 с.
Орлов С.С. Обобщенные решения интегро-дифференциальных уравнений высоких порядков в банаховых пространствах. Иркутск : ИМЭИ, 2014. 149 с.
Тимофеев В.А. Электромагнитные поля и волны. Ярославль : ЯрГУ, 2008. 180 с.
Никольский В.В. Электродинамика и распространение радиоволн. М. : Либроком, 2012. 543 с.
Привалов И.И. Интегральные уравнения. М. : Издательство Юрайт, 2016. 253 с.
Пиротти Е.Л., Отдельнов В.А. Моделирование распределения электромагнитного поля в малых биологических сферах. Вестник НТУ ХПИ. 2007. № 41. С. 17 21.