The influence of cutting modes on wear resistance of cutters and accuracy of fine boring of steels
DOI:
https://doi.org/10.15276/opu.2.64.2021.02Keywords:
wear resistance, accuracy, cutter geometry, single- and double-cutter boring, cutting modesAbstract
This paper is devoted to experimental study of fine boring of steels, which improves performance and parameters of processing accuracy. The conditions that ensure high wear resistance of cutting blades and improvement of accuracy parameters and processing quality were determined by changing cutting conditions and special geometry of carbide cutters with chip-curving chamfers. In the experiments, single-cutter boring was used, as well as double-cutter according to the feed division method. On the basis of the method of planning an experiment in the presence of a large number of variable input parameters, rational values of speed, feed, depth of cut, as well as parameters of roughness, taper and deviations from the roundness of the machined holes are established. The effect of fine boring modes on wear and tool life of cutting edges has been clarified. The influence of the compliance of cantilever boring bars on the level of oscillation of the cutter was also studied. It was found that intense vibrations occur for boring bars of small diameter <10 mm at a depth of cut >0.1 mm, resulting in intensive wear of the cutters. In preliminary experiments, it was found that boring of soft parts (type 20X and steel 30) is significantly different from machining harder steels and requires the use of other cutting conditions. Although the groups of structural carbon, high-quality and alloy steels may differ insignificantly in terms of processing conditions and the results achieved in the process of fine boring, however, for processing steels with special properties, a distinctive feature arises, namely increase in the level of vibrations with increasing cutting speed within the range usually used for other steels. This paper shows results of an experimental study of the process of thin boring of 35L steel with cutters made of TЗ0K4 hard alloy and chip-curving chamfers along the cutting blades.
Downloads
References
Лінчевський П.А., Джугурян Т.Г., Оргіян О.А. Обробка деталей на обробно-розточувальних верстатах / за заг. ред. П.А. Лінчевського. Київ : Техніка, 2000. 300с. ISBN 966-575-048-8.
Суслов А.Г., Дальский А.М. Научные основы технологии машиностроения. Москва : Машиностроение, 2002.
Sastry C.C., Hariharan P., Pradeep Kumar M., Muthu Manickam M.A. Experimental investigation on boring of HSLA ASTM A36 steel under dry, wet, and cryogenic environments. Materials and Manufacturing Processes. 34 (12). P. 1352–1379. DOI: https://doi.org/10.1080/10426914.2019.1643477.
Оборский Г.А., Оргиян А.А., Минчев Р.М., Баланюк А.В. Задачи динамики в технологии машиностроения. Резание и инструменты в технологических системах. 2017. Вып. 87. С. 3–11.
Vnukov Yu. N. Finding Dynamic Properties of Non-rigid Parts Like Jammed Plates Zaporizhia, Ukraine. Modern technologies in machine building. 2011. 6. P. 6–12.
Копелев Ю.Ф., Оргиян А.А., Кобелев В.М. Параметрические колебания металлорежущих станков / Под общей редакцией Ю.Ф. Копелева Одесса : Печатный дом, ОНПУ. 2007. 352 p. ISBN 978-966-389-103-3.
Albakush Aymen. Column of cantilever boring bars of small diameter. Collection of Science Works of the VІІ-Ої International Science and Technology Conference “Progressive technologies for machinery RTME-2019”, p. 66–68, 4–8 February 2019 p. Ivano-Frankivsk, Yaremche, 2019. 234 p.
Основы теории резки материалов: Учебное пособие для вузов / Н. П. Мазур, Ю. Н. Внуков, А.И. Грабченко и др. / под общей ред. Н.П. Мазура, А.И. Грабченко. Издание 2-е, перераб. и доп. Харьков : НТУ ХПИ, 2013. 534 с.
Маталин А.А. Технология машиностроения: учеб. 3-е изд. СПб. : Лан, 2010. 512 с.
Новиков Ф.В. Иванив И.Е. Особенности формирования погрешностей обработки при растачивании и развертывании отверстий. Вестник СевНТУ: Сборник научных статей. 2013. Вып. 139. С. 161–165.
Родина А.А., Фидаров В.Х., Ермаков Е.С. Исследование износа резцов при растачивании. Актуальные проблемы машиностроения. 2016. Вып. № 3. C. 224–228.
Krol O., Porkuian O., Sokolov V., Tsankov P. Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes Rendus de L’Academie Bulgare des Sciences. 2019. 72 (11). P. 1546–1556. DOI: https://doi.org/10.7546/CRABS.2019.11.12.
Reith, M.J., Bachrathy, D., Stepan, G.: Improving the stability of multi-cutter turning with detuned dynamics. Machining Science and Technology. 2016. 20 (3). P. 440–459. DOI: https://doi.org/10.1080/ 10910344.2016.1191029.
Fallah M., Moetakef-Imani B. Investigation on nonlinear dynamics and active control of boring bar chatter. J Braz. Soc. Mech. Sci. Eng. 2021. 43. 116.
Hayati S., Shahrokhi M., Hedayati A. Development of a frictionally damped boring bar for chatter suppression in boring process. International Journal of Advanced Manufacturing Technology. 2021. 113 (9-10). P. 2761–2778. DOI: https://doi.org/10.1007/s00170-021-06791-3.
Ren Y., Zhao Q., Liu Y., Ma J. Analysis of bending vibration characteristics of rotating composite boring bar. Journal of Physics: Conference Series. 2019. 1303 (1). № 012147.
Шишков М.М. Марки сталей и сплавов: Справочник. Донецк : 2002. 456 с.