Development and research of throttle-regulating valves with increased erosion resistance
DOI:
https://doi.org/10.15276/opu.3.62.2020.08Keywords:
erosion, valve of new design, experiment, pressure distribution, flow characteristicAbstract
The reliability and trouble-free operation of nuclear power plants is due to the reliability of the pipeline systems connecting the main and auxiliary equipment. The main elements of such systems are power valves, the reliable operation of which largely determines the reliability of the NPP as a whole. At the same time, one of the problems that reduce the service life of the reinforcement is the erosive wear of its main elements. The article is devoted to the development and experimental research of reinforcement with increased resistance to erosion wear. The problems associated with the operation of valves and the relevance of the raised problem are shown. It should be noted that the study of such a valve is performed for the first time. A feature of the valve design is that the medium, passing through the regulator, does not leave the valve, but enters the porous filling, where the flow rate and associated noise are effectively damped. The article presents an experimental design of such a valve and describes an experimental stand for its research, gives a description of research methods. To study the flow in the porous layer, 12 sensors were used, inserted into the layer. Fractional polyethylene was used as a porous backfill, therefore the experiment was carried out at low pressures and normal temperatures. As a result of the experiment, the pressure distribution in the porous layer was obtained depending on the degree of valve opening and the increase in flow through it. Nonlinear dependences are obtained at average flow rates and linear at maximum and minimum flow rates. It has been established that in such reinforcement the section with a high velocity of the medium will be in a porous backfill. The study of the hydraulic characteristic showed that this characteristic has near linear character, similar for flows in porous media.
Downloads
References
Имбрицкий М.И. Справочник по арматуре и трубопроводам химических цехов электростанций. Москва. : Энергоатомиздат, 1985. 168 с.
Иткина Д.М. Исполнительные устройства систем управления в химической и нефтехимической промышленности. Москва : Химия, 1984. 232 с.
Арзуманов Э.С. Гидравлические регулирующие органы систем автоматического управления. Москва : Машиностроение, 1985. 256 с.
Павлишин П.Я. Пошкодження енергетичної арматури і її вхідний контроль. Праці Одеського політехнічного університету. 2019. Вип. 3(59), С. 64–67. DOI: 10.15276/opu.3.59.2019.09.
Причины и виды неисправностей запорной арматуры. URL: https://tpa-asteko.ru/poleznye-materialy/106-prichiny-i-vidy-neispravnostej-zapornoj-armatury.
Казначеева И.В. Эрозионный износ энергетической арматуры. Вестник калужского универси-тета. 2013. № 3-4. C. 18–22.
Имбрицкий М.И. Надёжность арматуры энергетических блоков. Москва :Энергия, 1980. 95 с.
Соединение труб из разнородных металлов / Киселёв С.Н. и др. Москва : Машиностроение, 1981. 176 с.
Филлипов Г.А., Салтанов Г.А., Кукушкин А.Н. Гидродинамика и тепломассообмен в присутст-вии поверхностно-активных веществ. Москва : Энергоатомиздат, 1988. 184 с.
Сборник директивных материалов по эксплуатации энергосистем : Теплотехническая часть. Минэнерго СССР. Москва : Энергоатомиздат, 1981. 320 с.