Water hammers into pipeline systems because of oscillatory instability

Authors

DOI:

https://doi.org/10.15276/opu.1.57.2019.10

Keywords:

water hammer, verification, power equipment, pipeline system, inertia, oscillatory hydrodynamic instability, pump head-flow characteristic

Abstract

The paper presents an analysis of well-known research on determining of the causes and conditions for water hammers into pipeline systems of different power facilities. Pulse high-amplitude dynamic impact on power equipment and pipeline system elements accompanies water hammers. When water hammers, the kinetic energy of the flow stagnation turns into the energy of the water hammer pulse. Water hammers can significantly affect reliability and operability of power equipment and pipeline system elements. It was revealed that oscillatory hydrodynamic instability effects are the least studied causes and conditions for water hammers into pipeline systems of power facilities. The method to determine the conditions for water hammers in closed forced circulation circuits of energy systems is considered. The method is based on the conditions for oscillatory hydrodynamic instability because of the inertia of the pump head-flow characteristic. The “time delay” of response of the pump head-flow characteristic to changing the flow hydrodynamic parameters defines the inertia. Verification of the considered method to specify conditions for water hammers is provided by the example of known results of experimental research. Professor Korolev’s experimental data obtained at the closed circulating experimental stand with piston pumps are used to verify the considered method. Calculations and experiments agree quite satisfactorily with the exception of a single mode, which also does not correlate, with other experimental data.

Downloads

Download data is not yet available.

Author Biographies

Volodymyr Skalozubov, Odessа Polytechnic National University

DSc, Prof.

Oleg Chulkin, Odessа Polytechnic National University

PhD

References

Комплекс методов переоценки безопасности атомной энергетики Украины с учетом уроков эко-логических катастроф в Чернобыле и Фукусиме / Скалозубов В.И., Мазуренко А.С., Козлов И.Л., Оборский Г.А. и др. Одесса: Астропринт, 2013. 244 с.

Safwat Hemmat H., Arustu Asif H., Husaini Syed M. Systematic Methodology for Diagnosis of Water Hammer in LWR power plants. Nucl. Eng. and Design. 1990. 122. P. 365–376.

NUREG/CR-6519. Screening Reactor Steam/Water Piping Systems for Water Hammer. 1997.

Bjorge R.W., Griffith P. Initiation of Water Hammer in Horizontal and Nearly Horizontal Pipes Con-taining Steam and Subcooled Water. ASME Journal of Heat Transfer. 1984. 106(4). P. 835–840.

Lee S.C., Bankoff S.G. Stability of Steam-Water Countercurrent Flow in an Inclined Channel: Part II Condensation-Induced Water Hammer. ASME Journal of Heat Transfer. 1984. 106(4). P. 900–902.

Prasser H.-M., Bottger A., Zschau J., Baranyai G., Ezsol Gy. Thermal effects during condensation in-duced water hammer behind fast acting valves in pipelines. 11th Intern. Conf. on Nuclear Engineering (Tokyo, JAPAN, 20–23 April 2003), ICONE11-36310. Tokyo, 2003. Van Duyne D.A., Yow W., Sa-bin J.W. Water Hammer Prevention, Mitigation and Accommodation. Volume 1: Plant Water Hammer Experience. EPRI Report NP-6766. 1992.

Van Duyne D.A., Yow W., Sabin J.W. Water Hammer Prevention, Mitigation and Accommodation. Volume 1: Plant Water Hammer Experience. EPRI Report NP-6766. 1992. P. 166–174.

Block J. A. Condensation-driven fluid motions. Int. Journal on Multiphase Flow. 1980. Vol. 6. P. 113–129.

Делайе Дж., Гио М., Ритмюллер М. Теплообмен и гидродинамика двухфазных потоков в атомной и тепловой энергетике. Москва : Энергоатомиздат, 1984. 422 с.

Condensation driven water hammer studies for feed water distribution pipe / Savolainen S., Katajala S., Elsing B. et al. Fourth Intern. Seminar on Horizontal Steam Generators (Lappeenranta, Finland, 11–13 March 1997). Lappeenranta, 1997.

Герлига В.А., Хабенский В.Б. Нестабильность потока теплоносителя в энергооборудовании. Мо-сква: Энергоиздат, 1994. 288 с.

Коврижкин Ю.Л., Скалозубов В. И. Термоакустическая неустойчивость теплоносителя в актив-ной зоне водоводяных энергетических реакторов. Одесса: ТЭС, 2003. 171 с.

Фокс Д.А. Гидравлический анализ неустановившегося течения в трубопроводах. Москва: Энер-гоиздат, 1981. 247 с.

Филин Н.В. Жидкостные криогенные системы. Ленинград: Машиностроение, 1985. 247 с.

Королев А.В. Анализ и моделирование теплоэнергетического оборудования, работающего с двухфазными течениями. Одесса: Астропринт, 2010. 456 с.

Жуковский Н.Е. О гидродинамическом ударе в водопроводных системах. М.-Л.: ГИТТЛ, 1949. 100 с.

Korolyov O.V., Zhou HuiYu. Dynamic damper pressure fluctuation in the pumping systems. Праці Одеського політехнічного університету. 2016. Issue 1(48). P. 35–41.

Королев А.В., Чжоу Х. Ю. Исследование динамики поршневого насоса в нормальном режиме и при срыве подачи. Холодильная техника. 2016. Вып. 5, № 52. С. 4–8.

Безруков Ю.А., Лисенков Е.А., Селезнев А.В. Анализ возможности гидроударов в первом конту-ре реакторов ВВЭР. Обеспечение безопасности АЭС с ВВЭР: материалы 6-й междунар. науч.-техн. конф. (Подольск, Россия, 26—29 мая 2009 г.). Подольск : ОКБ «Гидропресс», 2009.

Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems / Mazurenko A.S., Skalozubov V.I., Chulkin O.A. et al. Problems of the Regional Energetics. Kishinau, 2017. No. 2(34).

Скалозубов В. И., Чулкин О.А., Пирковский Д.С. Гидроудары вследствие теплогидродинамиче-ской неустойчивости. LAP LAMBERT Academic Publishing. 2018. 64 с.

Downloads

Published

2019-03-17

How to Cite

[1]
Skalozubov, V., Alalі M., Bilous, N., Gablaya, T., Kochneva, V., Pirkovskiy, D. and Chulkin, O. 2019. Water hammers into pipeline systems because of oscillatory instability. Proceedings of Odessa Polytechnic University. 1, 1(57) (Mar. 2019), 84–89. DOI:https://doi.org/10.15276/opu.1.57.2019.10.