Influence of pressure in the turbine condenser on heat supply efficiency of NPP with heat pump
DOI:
https://doi.org/10.15276/opu.2.68.2023.04Keywords:
nuclear power plant, heat pump, heating plant, exergy efficiencyAbstract
The use of a heat pump for heat supply makes it possible to practically stop thermal pollution of the environment during the operation of thermal and nuclear power plants in winter. If a steam turbine condenser is used as a low-potential energy source for heat pump, the amount of released thermal energy will be equal to the sum of the thermal power of the NPP condenser and the power of the heat pump compressors. From the point of view of environmental safety, heat supply by combining power plant with a heat pump is an urgent task. But it is known that the due to the lack of steam extraction for water heating, the additional electrical power of the cogeneration heat and power plant will be less than the capacity of the heat pump compressors. Thus, in terms of thermodynamic efficiency, the use of a heat pump loses to a traditional cogeneration plant. The purpose of the work is to determine the influence of the final pressure in the turbine condenser on the thermodynamic efficiency of a nuclear power plant with a heat pump. A mathematical model of the thermal scheme of the K-1000-5.8/1500 NPP turbo-plant during summer and winter operation with heating plant has been developed. With the heating plant capacity of 230 MW, the electric capacity of NPP unit decreases by 43.5 MW. A mathematical model of a heat pump has been developed, for which a steam turbine condenser is used as a low-potential energy source. To ensure the release of 230 MW of heat, the power of the heat pump compressor must be 48.4 MW. Thus, if the heating plant is replaced with a heat pump of the same capacity, the electric power will decrease by 4.8 MW. Calculations were made regarding the influence of the final pressure in the condenser on the exergetic efficiency of the NPP with heat pump, which uses the entire capacity of the turbine condenser. The analysis of the obtained results showed that the exergetic efficiency due to the increase in electric power released in winter increases with the increase of the final pressure in the condenser. This is explained by an increase in the heat pump coefficient of performance.
Downloads
References
Increasing the Efficiency of NPP by Using the Heat Pump for Heat Supply / Kravchenko V., Kolykhanov М., Muromsky E., Vysotsky Yu., Galatsan M., Overchenko A. Proceedings of the 13th International Conference of the Croatian Nuclear Society. Zadar, Croatia, June 5–8, 2022. Р. 120-1–120-10. URL: https://nuclear-option.org/wp-content/uploads/2022/11/S3-120.pdf.
Milana Treshcheva, Irina Anikina, Dmitry Treshchev, Sergey Skulkin. Heat Pump Capacity Selection for TPPs with Various Efficiency Levels. Energies. 2022. 15(12), 4445. DOI: https://doi.org/10.3390/en15124445.
Ефимов Н.Н., Папин В.В., Малышев П.А., Безуглов Р.В. Анализ использования тепловых насосов на тепловых и атомных электростанциях. Технические науки. 2010. № 4. С. 35–39.
Чиркин Н. Б., Кузнецов М. А., Шерстов М. А., Стенников В. Н. Потенциальная возможность и техническая рациональность применения теплонасосных технологий при комбинированном производстве электрической и тепловой энергии. Проблемы машиностроения. 2014. Т. 17, № 1. С. 11–20.
Щеклеин С.Е., Ташлыков О.Л., Дубинин А.М. Повышение энергоэффективности АЭС. Ядерная энергетика. 2015. №4. С. 15–25.
Радечко Е.Н. Возможности использования турбонасосной установки путем утилизации низкопотенциального промышленного тепла турбин. Актуальные проблемы энергетики : материалы 72-й научно-технической конференции студентов и аспирантов. Минск : БНТУ, 2016. С. 530–533. URL: https://rep.bntu.by/handle/data/29235.
OCHSNER energy technology! Heat pumps for high outputs. OCHSNER HEAT PUMPS. URL: https://www.ochsner.com/en/ochsner-products/high-capacity-heat-pumps/.
Xu Z.Y., Mao H.C., Liu D.S., Wang R.Z. Waste heat recovery of power plant with large scale serial absorption heat pumps. Energy. 2018. Vol. 165, Part B. P. 1097–1105. DOI: https://doi.org/10.1016/j.energy.2018.10.052.
Паровые и газовые турбины для электростанций / А.Г. Костюк, В.В. Фролов, А.Е. Булкин и др. М. : Издательский дом МЭИ, 2008. 556 с.
Кіров В.С. Теплові схеми турбоустановок АЕС і їх розрахунок. Київ : Астропрінт, 2004. 212 с.
Дубковський В.О. Термодинамічний аналіз та оптимізація АЕС. Одеса : Наука і техніка, 2004. 48 с.