Reduced air injection time during containment testing due to the use of an ejector

Authors

  • Volodymyr Kravchenko Odessа Polytechnic National University https://orcid.org/0000-0002-7557-3327
  • Anatoliy Vlasov Odessа Polytechnic National University
  • Anatoliy М. Andryushchenko Odessа Polytechnic National University
  • Dmitry Vlasov State Professional School “Odessa Professional College of Marine Transport"
  • Andrii Holovchenko Odessа Polytechnic National University https://orcid.org/0000-0002-7021-451X

DOI:

https://doi.org/10.15276/opu.1.65.2022.07

Keywords:

containment, leak test, compressor, ejector

Abstract

When testing the tightness of the containment and elements of the accident localization system at the Ukrainian NPP, the "absolute pressure" method is used. Using this method, as a result of measuring air pressure, temperature, and humidity, the Mendeleev-Clapeyron equation determines the mass of air present in the containment. That is, the turn is determined indirectly by determining the change in the mass of air in the containment over time. The tests consist of five stages: vacuuming; air injection, to achieve the required pressure value; parameter stabilization; measurement; pressure relief, and last more than 25 hours. During the tests, no work is carried out in the containment. A necessary condition for testing is to ensure overpressure in the containment. This is done by the operation of the compressor. Given the large volume of containment, this requires a relatively long time, which affects the economic performance of nuclear power plants. In this paper, it is proposed to use an ejector to reduce the time of air injection, the working environment for which is the air after the compressor. The environment for injection is taken from the environment (from the "pure" volume). The article calculates the time of air injection by the compressor to the containment under today’s conditions and when using an ejector. The pressure in the containment changes from 0 to 0.0686 MPa during injection. The ejector outlet pressure is optimized for designing relative to the minimum discharge time. The optimal pressure at the ejector outlet during design is 0.45 bar. It is shown that due to the use of an ejector, the injection time can be reduced by about 30 %.

Downloads

Download data is not yet available.

References

Nuclear containments: state-of-art report. Stuttgart: Fédération internationale du béton, 2001. 117 p. URL: https://en.wikipedia.org/wiki/F%C3%A9d%C3%A9ration_internationale_du_b%C3%A9ton.

Верхивкер Г.П., Кравченко В.П. Основы расчета и конструирования ядерных энергетических реакторов. Одесса : ТЭС, 2008. 409 с.

Ратц Е.М., Хряпченкова И.Н. Анализ и оптимизация работ по предварительному напряжению железобетонных защитных оболочек АЭС. Вестник науки и образования Северо-Запада России. 2016. Т. 2, №1. С. 1–6. URL: https://cyberleninka.ru/article/n/analiz-i-optimizatsiya-rabot-po-predvaritelnomu-napryazheniyu-zhelezobetonnyh-zaschitnyh-obolochek-aes/viewer.

НП 306.2.218-2018. Правила улаштування та безпечної експлуатації систем безпеки. Офіціальний вісник України. 2018. №40. C. 187–199.

Программа. Испытание на герметичность. Система герметичного ограждения. Локализующая система безопасности. ОП Ривненская АЭС. 2016. 38 с.

Ваняшов А. Д. Применение методов перерасчета газодинамических характеристик многоступенчатых и многосекционных турбокомпрессоров на другие условия работы в различных технологических установках. Omsk scientific bulletin. 2018. 2, № 1. 42–52. DOI: 10.25206/2588-0373-2018-2-1-42-52.

Соколов Е.Я., Зингер Н.М. Струйные аппараты. М. : Энергоатомиздат, 1989. 351 с.

Downloads

Published

2022-03-16

How to Cite

[1]
Kravchenko, V., Vlasov, A., Andryushchenko A.М., Vlasov, D. and Holovchenko, A. 2022. Reduced air injection time during containment testing due to the use of an ejector. Proceedings of Odessa Polytechnic University. 1(65) (Mar. 2022), 62–69. DOI:https://doi.org/10.15276/opu.1.65.2022.07.

Most read articles by the same author(s)