The project status morphological indicator and method of its express evaluation
DOI:
https://doi.org/10.15276/opu.2.61.2020.10Keywords:
crisis management, complex system state, morphological index, rapid measurements, probabilistic evaluationAbstract
Every crisis intervention in a project actually destroys its original plan – the latter is more and more different from reality, and if there are many such interventions, there can be nothing left from the original plan! The models used in the initial planning of the project become inadequate, which immediately and negatively affects the accuracy and effectiveness of anti-crisis morphological decisions. The project team, after each structural intervention, should quickly begin to create a new plan, which should be provided with a new methodology of crisis management project based on morphological rapid analysis of organizational and technical systems to assess the current status of the project. For crisis management of any feedback entity, it is necessary to be able quickly measure the parameters of the state of that object in response to management intervention. Therefore, the purpose of scientific research, in which the complex object was project management, was to create a method of rapid measurement of the project status using the first proposed morphological (structural) indicator. The system of crisis management of complex technical systems is built on the basis of feedback on deviation of the current flow of the project from the planned one. A new complex parameter M is proposed, which uniquely and representatively reflects the morphological deviation of the current flow of the project from the planned one. The indicator is the product of the complex probability of a project’s ability to overcome the effects of a crisis without stopping or changing its overall structure and the cost of such a solution. Complex probability is calculated as the square root of the sum of the squares of crisis compensation probabilities by technological, variational, and creative methods. This made it possible to use this indicator as a criterion for the need to start the process of morphological response to the respective crises. The compo-nents of the complex parameter M and methods of their express measurement and calculation are determined. Based on the research, a scheme for the computer support subsystem of decision making in the planning and execution of the Copper Continuous Casting Projects (COCAST) crisis management project was developed. The practical use of the results of the study was carried out in the operating company at its own expense. The planned construction time was reduced by 7.4 % and cost by 5.9 %. The production of the new workshop made it possible to increase the competitiveness of the enterprise.
Downloads
References
Bakhshi J., Ireland V., Gorod A. Clarifying the project complexity construct: past, present and future. Int J Project Manage. 2016. № 34 (7). P. 1199–1213. DOI: 10.1016/j.ijproman.2016.06.002.
Haas E.J., Yorio P. Exploring the state of health and safety management system performance measure-ment in mining organizations. Saf Sci. 2016. № 83. Р. 48–58. DOI: 10.1016/j.ssci.2015.11.009.
Grasping project complexity in large engineering projects: the TOE (technical, organizational, and envi-ronmental) framework / M. Bosch-Rekveldta, Y. Jongkindb, H. Mooia, H. Bakkerc, A. Verbraeckb. Int J Project Manage. 2011. № 29 (6), Р. 728–739. DOI: 10.1016/j.ijproman.2010.07.008.
Kumar P., Rathore I. The need of mining industry – a SWOT analysis. Int Res J Earth Sci. 2015. № 3(8). Р. 32–36.
Badri A. The challenge of integrating OHS into industrial project risk management: proposal of a meth-odological approach to guide future research (case of mining project in Quebec). Minerals. 2015. № 5(2). Р. 314–334. DOI: 10.3390/min5020314.
Rasmussen J., Lundell А.K. Understanding «communication gaps» among personnel in high-risk work-places from a dialogical perspective. Saf Sci. 2012. № 50(1). Р. 39–47.
Dahlberg R. Resilience and complexity: conjoining the discourses of two contested concepts. Cult Un-bound J Curr Cult Res. 2015. 7(3). Р. 541–557.
Fitsilis P., Damasiotis V. Software project’s complexity measurement: a case study. J Softw Eng Appl. 2015. № 8(10). Р. 549–556.
Corral-Quintana S., Legna-de la Nueza D., Vernab C., Hernández J., de Lara D. How to improve strate-gic decision-making in complex systems when only qualitative information is available. Land Use Pol. 2016. № 50(78). Р. 83–101.
Nelitz M.A., Beardmore B., Machtans C.S., Hall W.A., Wedeles C. Addressing complexity and uncer-tainty: conceptual models and expert judgments applied to migratory birds in the oil sands of Canada. Ecol Soc. 2015. № 20(4). p. 4.
Bjerga T., Aven T. Some perspectives on risk management: a security case study from the oil and gas industry. J Risk Reliab. 2016. № 230(5). Р. 512–520.
Домбровський М.З., Саченко А.О. Модель проактивного управління проектом стратегічного ро-звитку енергопостачальних компаній в турбулентному оточенні. Вісник Нац. техн. ун-ту «ХПІ»: Стратегічне управління, управління портфелями, програмами та проектами. 2017. № 2 (1224). С. 41–45.
Lambrechts O., Demeulemeester E., Herroelen W., Lambrechts O. Proactive and reactive strategies for resourceconstrained project scheduling with uncertain resource availabilities. Journal of scheduling. 2008. Vol. 11. №. 2. P. 121–136. DOI: doi.org/10.2139/ssrn.950917/.
Geraldi J., Maylor H., Williams T. Now, let’s make it really complex (complicated): a systematic re-view of the complexities of projects. Int J Oper Prod Manage. 2011. № 31(9). Р. 966–990.
Ковалев И.В., Тынченко C.В., Завьялова О.И., Лайков А.Н. Система поддержки многоатрибутив-ного принятия решений при управлении сложными системами. Программные продукты и сис-темы. 2009. № 2. C. 142–144.
Даве В., Кестел Д. Руководство к Своду знаний по управлению проектами (Руководство PMBOK). Пятое издание. Project Management Institute. 2013. 614 с.
Савельева О.С., Становская И.И., Пурич Д.А. Моделирование состояния технических систем с латентными элементами с помощью СММ. Оралдын гылым жаршысы: научн.-теорет. и практ. журнал. Серия: технические науки. Современные информационные технологии. 2014. № 21(100). С. 5–11.
Saveleva O., Stanovska I., Khomyak Yu., Toropenko A., Naumenko Ie. Optimization of uniformly stressed structures of cylindrical tanks in CAD. Восточно-европейский журнал передовых техноло-гий. Информационные технологии. 2016. № 6/7(84). С. 10–16.
Иванов М.Т., Сергиенко А.Б., Ушаков В.Н. Теоретические основы радиотехники. Под ред. В.Н. Ушакова. М.: Высшая школа. 2002. 306 с.
Лекции по Теории передачи сигналов. URL: http://siblec.ru/index.php?dn=html&way= bW9kL2h0bWwvY29udGVudC84c2VtLzA4OS8yLTEuaHR (дата звернення: 19.11.2019).
Осипов Л. А. Обработка сигналов на цифровых процессорах. Линейно-аппроксимирующий ме-тод. Горячая линия – Телеком. М. : 2001. 114 с.
Berman Alan. Constructing a Successful Business Continuity Plan. Business Insurance Magazine. 2015. March 9.
Ушаков Д. В. Психология интеллекта и одаренности. Институт психологии РАН. М.: 2011. 464 с.